Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 34(5): e8602, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31756780

ABSTRACT

Nalophan bags are commonly used to collect breath samples for volatile metabolite analysis. Volatile organic compounds (VOCs) released from the polymer can, however, be mistaken as breath metabolites when analyses are performed by selected ion flow tube mass spectrometry, SIFT-MS, or techniques that depend on a proper understanding of ion chemistry. METHODS: Three analytical techniques were used to analyse the VOCs released into the nitrogen used to expand Nalophan bags, viz. gas chromatography/mass spectrometry (GC/MS), secondary electrospray ionization mass spectrometry (SESI-MS) and selected ion flow tube mass spectrometry (SIFT-MS). The most significant VOCs were identified and quantified by SIFT-MS as a function of storage time, temperature and humidity. RESULTS: The consistent results obtained by these three analytical methods identify 1,2-ethanediol (ethylene glycol) and 2-methyl-1,3-dioxolane as the major VOCs released by the Nalophan. Their concentrations are enhanced by increasing the bag storage temperature and time, reaching 170 parts-per-billion by volume (ppbv) for ethylene glycol and 34 ppbv for 2-methyl-1,3-dioxolane in humid nitrogen (absolute humidity of 5%) contained in an 8-L Nalophan bag stored at 37°C for 160 min. CONCLUSIONS: Using H3 O+ reagent ions for SIFT-MS and SESI-MS analyses, the following analyte ions (m/z values) are affected by the Nalophan impurities: 45, 63, 81, 89 and 99, which can compromise analyses of acetaldehyde, ethylene glycol, monoterpenes, acetoin, butyric acid, hexanal and heptane.

2.
Proc Natl Acad Sci U S A ; 112(3): 657-62, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25489115

ABSTRACT

The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.

3.
J Phys Chem A ; 118(4): 719-36, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24437678

ABSTRACT

The formation of nucleobases from formamide during a high-energy density event, i.e., the impact of an extraterrestrial body into the planetary atmosphere, was studied by irradiation of formamide ice and liquid samples with a high-power laser in the presence of potential catalysts. FTIR spectroscopy, time-resolved emission spectroscopy, and GC-MS were subsequently used to monitor the dissociation of this molecule into stable molecular fragments (HCN, H2O, HNCO, H2, CO, and NH3) and unstable species (HNC, •CN, and •NH). The kinetic and thermodynamic models of the high-energy density event molecular dynamics have been suggested together with the reaction routes leading from the dissociation products to the nucleobases. In addition, using theoretical calculations, we propose a simple new reaction pathway for the formation of both pyrimidine and purine nucleobases involving •CN radical chemistry.


Subject(s)
Formamides/chemistry , Nucleotides/chemistry , Models, Molecular , Molecular Conformation , Nitriles/chemistry , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL