Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Pediatr ; 8: 503054, 2020.
Article in English | MEDLINE | ID: mdl-33072668

ABSTRACT

Background: The pathognomonic feature of tetralogy of Fallot (ToF) is the antero-cephalad deviation of the outlet septum in combination with an abnormal arrangement of the septoparietal trabeculations. Aims: The aim of this article was to study perinatal hearts using Polarized Light Imaging (PLI) in order to investigate the deep alignment of cardiomyocytes that bond the different components of the ventricular outflow tracts both together and to the rest of the ventricular mass, thus furthering the classic description of ToF. Methods and Materials: 10 perinatal hearts with ToF and 10 perinatal hearts with no detectable cardiac anomalies (control) were studied using PLI. The orientation of the myocardial cells was extracted and studied at high resolution. Virtual dissections in multiple section planes were used to explore each ventricular structure. Results and Conclusions: Contrary to the specimens of the control group, for all ToF specimens studied, the deep latitudinal alignment of the cardiomyocytes bonds together the left part of the Outlet septum (OS) S to the anterior wall of the left ventricle. In addition, the right end of the muscular OS bonds directly on the right ventricular wall (RVW) superior to the attachment of the ventriculo infundibular fold (VIF). Thus, the OS is a bridge between the lateral RVW and the anterior left ventricular wall. The VIF, RVW, and OS define an "inverted U" that roofs the cone between the interventricular communication and the overriding aorta. The opening angle and the length of the branches of this "inverted U" depend however on three components: the size of the OS, the size of the VIF, and the distance between the points of insertion of the OS and VIF into the RVW. The variation of these three components accounts for a significant part of the diversity observed in the anatomical presentations of ToF in the perinatal period.

3.
Phys Med Biol ; 63(21): 215003, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30265658

ABSTRACT

Diffusion tensor imaging (DTI) is a non-invasive technique used to obtain the 3D fiber structure of whole human hearts, for both in vivo and ex vivo cases. However, by essence, DTI does not measure directly the orientations of myocardial fibers. In contrast, polarized light imaging (PLI) allows for physical measurements of fiber orientations, but only for ex vivo case. This work aims at quantitatively comparing the myocardial fiber orientations of whole human hearts obtained from cardiac DTI with those measured by PLI. Whole human neonatal and infant hearts were first imaged using DTI. The same whole hearts were then imaged using PLI. After DTI and PLI data are registered, the orientations of fibers from the two imaging modalities were finally quantitatively compared. The results show that DTI and PLI have similar variation patterns of elevation and azimuth angles, with some differences in transmural elevation angle range. DTI itself induces an underestimation of the range of transmural elevation angles by a factor of about 25° at the basal and equatorial slices and the reduction of spatial resolution further decreases this range. PLI data exhibit a 15° ± 5° (P < 0.01) narrower transmural elevation angle range at apical slices than in basal or equatorial slices. This phenomenon is not observed in DTI data. In both modalities, the azimuth angle maps exhibit curved or twisting boundaries at the basal and apical slices. The experimental results globally enforce DTI as a valid imaging technique to reasonably characterize fiber orientations of the human heart noninvasively.


Subject(s)
Diffusion Tensor Imaging/methods , Heart/anatomy & histology , Image Processing, Computer-Assisted/methods , Myocardium/pathology , Neuroimaging/methods , Optical Imaging/methods , Heart/physiology , Humans , Infant , Infant, Newborn
4.
Surg Radiol Anat ; 40(1): 75-83, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29181565

ABSTRACT

BACKGROUND: The 3D architecture of the ventricular mass is poorly known, although in vivo imaging techniques show the physiological inhomogeneity of ventricular walls mechanics. Polarized light imaging makes it possible to quantitatively analyse the myosin filament orientation. AIMS: In this paper, we focus on the study the 3D architecture and regional isotropy of myocardial cells. METHODS: Twenty normal human hearts, 10 from the perinatal period and 10 from the post-neonatal period were studied by polarized light microscopy. In each voxel of the ventricular mass (90 × 90 × 500 µm) the principal orientation segment was automatically and unambiguously extracted as well as a regional isotropy index (regional orientation tensor of the voxel neighbourhood). RESULTS: During the first months of postnatal age, the median regional isotropy values decreased in the ventricular mesh. This global decrease was not homogeneous across the ventricular walls. From the perinatal to the neonatal period, this decrease was more marked in the inner two-third of the lateral left ventricular wall and in the right part of the interventricular septum. There was a progressive post-neonatal appearance of a particularly inhomogeneous secondary arrangement of myocardial cells with alternation of thick low-RI and thin high-RI areas. CONCLUSIONS: This study has shown a postnatal change in ventricular myocardial architecture, which became more inhomogeneous. The cell rearrangements responsible for the inhomogeneity in ventricular myocardial architecture are revealed by a variation of the regional isotropy index. These major changes are probably an adaptive consequence of the major haemodynamic changes occurring after birth during the neonatal period that generates major parietal stress variations and parietal remodelling.


Subject(s)
Heart Ventricles/cytology , Myocardium/cytology , Humans , Imaging, Three-Dimensional , Infant , Infant, Newborn
5.
Med Phys ; 43(5): 2273, 2016 May.
Article in English | MEDLINE | ID: mdl-27147339

ABSTRACT

PURPOSE: The arrangement or architecture of myocardial cells plays a fundamental role in the heart's function and its change was shown to be directly linked to heart diseases. Inhomogeneity level is an important index of myocardial cell arrangements in the human heart. The authors propose to investigate the inhomogeneity level of myocardial cells using polarized light imaging simulations and experiments. METHODS: The idea is based on the fact that the myosin filaments in myocardial cells have the same properties as those of a uniaxial birefringent crystal. The method then consists in modeling the myosin filaments of myocardial cells as uniaxial birefringent crystal, simulating the behavior of the latter by means of the Mueller matrix, and measuring the final intensity of polarized light and consequently the inhomogeneity level of myocardial cells in each voxel through the use of crossed polarizers. The method was evaluated on both simulated and real tissues and under various myocardial cell configurations including parallel cells, crossed cells, and cells with random orientations. RESULTS: When myocardial cells run perfectly parallel to each other, all the polarized light was blocked by those parallel myocardial cells, and a high homogeneity level was observed. However, if myocardial cells were not parallel to each other, some leakage of the polarized light was observed, thus causing the decrease of the polarized light amplitude and homogeneity level. The greater the crossing angle between myocardial cells, the smaller the amplitude of the polarized light and the greater the inhomogeneity level. For two populations of myocardial cell crossing at an angle, the resulting azimuth angle of the voxel was the bisector of this angle. Moreover, the value of the inhomogeneity level began to decrease from a nonzero value when the voxel was not totally homogeneous, containing for example cell crossing. CONCLUSIONS: The proposed method enables the physical information of myocardial tissues to be estimated and the inhomogeneity level of a volume or voxel to be quantified, which opens new ways to study the microstructures of the human myocardium and helps understanding how heart diseases modify myocardial cells and change their mechanical properties.


Subject(s)
Myocardium/cytology , Algorithms , Biomechanical Phenomena , Computer Simulation , Heart/radiation effects , Humans , Microscopy, Polarization/methods , Models, Cardiovascular , Myocardium/metabolism , Optical Phenomena
7.
Eur J Cardiothorac Surg ; 31(5): 915-21, 2007 May.
Article in English | MEDLINE | ID: mdl-17350851

ABSTRACT

OBJECTIVE: To address the advantages and drawbacks of quantitative polarized light microscopy for the study of myocardial cell orientation and to identify its contribution in the field. METHODS: Quantitative polarized light microscopy allows to measure the orientation of myocardial fibers into the ventricular mass. For each pixel of a horizontal section, this orientation is the mean value of the directions of all myosin filaments contained in the thickness of the section for each pixel of the section and is accounted for by two angles, the azimuth angle, which is the angle of the fiber in the plane of the section, and the elevation angle, which measures the way the fiber escapes from the section. The azimuth is accurately measured, and its range of definition is complete from 0 degrees to 180 degrees . The elevation angle can be defined only in the range 0 degrees to 90 degrees . It is accurately measured between 20 degrees and 70 degrees . From 0 degrees to 20 degrees , there is a systematic bias raising the measured values, and from 70 degrees to 90 degrees , the angle is not accurately measured. RESULTS: With this method, we validated Streeter's conjecture concerning the architecture of the left ventricle. We formulated a pretzel conjecture about the fiber architecture of the whole ventricular mass during fetal period. In our model, elaborated by visual analysis of registered maps of orientation, the fibers run like geodesics on a nested set of 'pretzels'. Next, the validity of the helical ventricular myocardial band model of Torrent-Guasp has been examined. It appears that the band model does not account for the patterns observed in our data during the fetal period. However, after the major events of postnatal cardiovascular adaptation, our data can neither discard nor confirm Torrent-Guasp's model. CONCLUSIONS: Present limitations of quantitative polarized light analysis can neither confirm nor discard the existing models of fiber orientation in the whole ventricular mass after the neonatal period. However, the problems of mathematical and experimental validation of these two models have been posed in a rigorous manner. Non-ambiguous fiber tracking and demonstration of these models will require significant improvement of the definition range of the elevation angle that should be extended to 180 degrees .


Subject(s)
Fetal Heart/cytology , Microscopy, Polarization/methods , Myocardium/cytology , Adaptation, Physiological , Heart Ventricles/cytology , Heart Ventricles/embryology , Humans , Infant, Newborn , Models, Biological , Muscle Fibers, Skeletal/cytology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL