Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732021

ABSTRACT

The most common manifestation of endometriosis, a condition characterized by the presence of endometrial-like tissue outside of the uterus, is the endometrioma, a cystic ovarian lesion. It is a commonly occurring condition associated with chronic pelvic pain exacerbated prior to and during menstruation, as well as infertility. The exact pathomechanisms of the endometrioma are still not fully understood. Emerging evidence suggests a pivotal role of immune dysregulation in the pathogenesis of endometriomas, primarily influencing both local and systemic inflammatory processes. Among the factors implicated in the creation of the inflammatory milieu associated with endometriomas, alterations in both serum and local levels of several cytokines stand out, including IL-6, IL-8, and IL-1ß, along with abnormalities in the innate immune system. While numerous signaling pathways have been suggested to play a role in the inflammatory process linked to endometriomas, only NF-κB has been conclusively demonstrated to be involved. Additionally, increased oxidative stress, both resulting from and contributing to endometriomas, has been identified as a primary driver of both systemic and local inflammation associated with the condition. This article reviews the current understanding of immune dysfunctions in the endometrioma and their implications for inflammation.


Subject(s)
Endometriosis , Inflammation , Humans , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/metabolism , Female , Inflammation/immunology , Inflammation/pathology , Cytokines/metabolism , Oxidative Stress , Signal Transduction , Immunity, Innate , Animals
2.
Sci Total Environ ; 905: 167380, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37774878

ABSTRACT

The importance of the microbiome in the functioning of degraded lands in industrialised zones is significant. However, little is known about how environmental parameters affect microbial abundance, structure, diversity, and especially specific guilds involved in the nitrogen cycle in saline soils influenced by the soda industry. To address this knowledge gap, our research focused on assessing the microbiota in relation to soil properties and plant species composition across two transects representing different types of land use: saline wasteland and arable fields. Our findings show that the microbial communities were the most affected not only by soil salinity but also by pH and the composition of plant species. Taxonomic variability was the most shaped by salinity together with management type and CaCO3 content. The impact of salinity on the soil microbiome was manifested in a reduced abundance of bacteria and fungi, a lower number of observed phylotypes, reduced modularity, and a lower abundance of the nitrifying guild. Denitrification and nitrogen fixation were less affected by salinity. The last process was correlated with calcium carbonate. CaCO3 was also associated with microbial taxonomic variability and the overall microbial activity caused by hydrolases, which could aid organic matter turnover in saline but carbonate-rich sites. Bacterial genera such as Bacillus, Peanibacillus, and Rhodomicrobium, in addition to fungal taxa such as Cadophora, Mortierella globalpina, Preussia flanaganii, and Chrysosporium pseudomerdarium, show potential as favourable candidates for possible bioremediation initiatives. These results can be applied to future land reclamation projects. FUNDING INFORMATION: This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


Subject(s)
Microbiota , Soil , Soil/chemistry , Soil Microbiology , Nitrogen Cycle , Bacteria
3.
J Environ Manage ; 345: 118557, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37429091

ABSTRACT

Droughts and floods are weather-related hazards affecting cities in all climate zones and causing human deaths and material losses on all inhabited continents. The aim of this article is to review, analyse and discuss in detail the problems faced by urban ecosystems due to water surplus and scarcity, as well as the need of adaptation to climate change taking into account the legislation, current challenges and knowledge gaps. The literature review indicated that urban floods are much more recognised than urban droughts. Amongst floods, flash floods are currently the most challenging, which by their nature are difficult to monitor. Research and adaptation measures related to water-released hazards use cutting-edge technologies for risk assessment, decision support systems, or early warning systems, among others, but in all areas knowledge gaps for urban droughts are evident. Increasing urban retention and introducing Low Impact Development and Nature-based Solutions is a remedy for both droughts and floods in cities. There is the need to integrate flood and drought disaster risk reduction strategies and creating a holistic approach.


Subject(s)
Droughts , Floods , Humans , Cities , Water , Ecosystem , Climate Change
4.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373091

ABSTRACT

While gastrointestinal tumors remain a multifactorial and prevalent group of malignancies commonly treated surgically in combination with chemotherapy and radiotherapy, advancements regarding immunotherapeutic approaches continue to occur. Entering a new era of immunotherapy focused on overcoming resistance to preceding therapies caused the emergence of new therapeutic strategies. A promising solution surfaces with a V-domain Ig suppressor of T-cell activation (VISTA), a negative regulator of a T-cell function expressed in hematopoietic cells. Due to VISTA's ability to act as both a ligand and a receptor, several therapeutic approaches can be potentially developed. A broad expression of VISTA was discovered on various tumor-growth-controlling cells, which proved to increase in specific tumor microenvironment (TME) conditions, thus serving as a rationale behind the development of new VISTA-targeting. Nevertheless, VISTA's ligands and signaling pathways are still not fully understood. The uncertain results of clinical trials suggest the need for future examining inhibitor agents for VISTA and implicating a double immunotherapeutic blockade. However, more research is needed before the breakthrough can be achieved. This review discusses perspectives and novel approaches presented in the current literature. Based on the results of the ongoing studies, VISTA might be considered a potential target in combined therapy, especially for treating gastrointestinal malignancies.


Subject(s)
Digestive System Neoplasms , Gastrointestinal Neoplasms , Humans , B7 Antigens/metabolism , Gastrointestinal Neoplasms/therapy , Lymphocyte Activation , Immunotherapy/methods , Tumor Microenvironment
5.
Cells ; 11(22)2022 11 21.
Article in English | MEDLINE | ID: mdl-36429125

ABSTRACT

Lymphomatoid papulosis (LyP) is a very rare disease that belongs to the group of CD30+ lymphoproliferative skin diseases. LyP is localized or generalized and usually presents as isolated or clustered red/brown-red lesions in the form of nodules and/or papules. The course of the disease is in most cases mild; however, depending on concomitant risk factors and history, it may progress to lymphoma, significantly reducing the survival rate and prognosis. Importantly, the clinical picture of the disease remains somewhat ambiguous, leading to a large number of misdiagnoses that result in inappropriate treatment, which is usually insufficient to alleviate symptoms. In addition to clinical manifestations, the histological characteristics vary widely and usually overlap with other conditions, especially those belonging to the group of lymphoproliferative disorders. Although diagnosis remains a challenge, several recommendations and guidelines have been introduced to standardize and facilitate the diagnostic process. This article reviews the available literature on the most important aspects of etiopathogenesis, clinical and histopathological features, diagnostic criteria, and possible treatment strategies for LyP, with particular emphasis on the role of the immune system.


Subject(s)
Lymphomatoid Papulosis , Skin Diseases , Humans , Lymphomatoid Papulosis/diagnosis , Lymphomatoid Papulosis/therapy , Immune System/pathology , Skin Diseases/pathology , Hyperplasia/complications , Hyperplasia/pathology , Diagnostic Errors
6.
Cells ; 11(8)2022 04 14.
Article in English | MEDLINE | ID: mdl-35456016

ABSTRACT

Bruton's Tyrosine Kinase (BTK) is considered crucial in the activation and survival of both physiological and malignant B-cells. In recent years, ibrutinib, an oral BTK inhibitor, became a breakthrough therapy for hematological malignancies, such as chronic lymphocytic. However, ibrutinib's feasibility might not end there. Several other kinases with established involvement with solid malignancies (i.e., EGFR, HER2) have been found to be inhibited by this agent. Recent discoveries indicate that BTK is a potential anti-solid tumor therapy target. Consequently, ibrutinib, a BTK-inhibitor, has been studied as a therapeutic option in solid malignancies. While most preclinical studies indicate ibrutinib to be an effective therapeutic option in some specific indications, such as NSCLC and breast cancer, clinical trials contradict these observations. Nevertheless, while ibrutinib failed as a monotherapy, it might become an interesting part of a multidrug regime: not only has a synergism between ibrutinib and other compounds, such as trametinib or dactolisib, been observed in vitro, but this BTK inhibitor has also been established as a radio- and chemosensitizer. This review aims to describe the milestones in translating BTK inhibitors to solid tumors in order to understand the future potential of this agent better.


Subject(s)
Breast Neoplasms , Piperidines , Adenine/analogs & derivatives , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase , Breast Neoplasms/pathology , Female , Humans , Piperidines/pharmacology
7.
Cancers (Basel) ; 14(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35326568

ABSTRACT

Bladder neoplasms, including the most common urothelial carcinoma, have been an escalating problem for years, especially in highly developed countries. Recent decades have brought us a steadily growing share of this cancer in terms of both morbidity and mortality statistics. Bladder neoplasms are not only a therapeutic challenge but also an economical one due to the demanding, costly diagnostics and treatment. The treatment of urothelial cancer can be divided depending on the stage and advancement; thus, we can distinguish three main categories: non-muscle invasive bladder cancer, conventionally treated by surgical interventions; muscle invasive bladder cancer, conventionally treated with chemotherapeutics; and advanced bladder cancer with distant metastases, conventionally treated with the intensive chemotherapy in the MVAC scheme (methotrexate, vinblastine, doxorubicin, and cisplatin). Recent years have brought a breakthrough: immunotherapy and targeted therapy were discovered to be beneficial for patients disqualified from chemotherapy or patients who progressed despite treatment. This literature review summarizes the latest research into the use of targeted therapy in the treatment of advanced bladder cancer, its benefits, and its limitations.

8.
Nutrients ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35276984

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the main and most prevalent side effects of chemotherapy, significantly affecting the quality of life of patients and the course of chemotherapeutic treatment. Nevertheless, despite its prevalence, the management of the CIPN is considered particularly challenging, with this condition often being perceived as very difficult or even impossible to prevent with currently available agents. Therefore, it is imperative to find better options for patients diagnosed with this condition. While the search for the new agents must continue, another opportunity should be taken into consideration-repurposing of the already known medications. As proposed, acetyl-L-carnitine, vitamins (group B and E), extracts of medical plants, including goshajinkigan, curcumin and others, unsaturated fatty acids, as well as the diet composed of so-called "sirtuin-activating foods", could change the typical way of treatment of CIPN, improve the quality of life of patients and maintain the continuity of chemotherapy. This review summarizes currently available data regarding mentioned above agents and evaluates the rationale behind future research focused on their efficacy in CIPN.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Antineoplastic Agents/therapeutic use , Dietary Supplements , Humans , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Quality of Life , Vitamins/therapeutic use
9.
Molecules ; 26(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34771011

ABSTRACT

The influence of macromolecular architecture on shear-induced crystallization of poly(L-lactide) (PLLA) was studied. To this aim, three star PLLAs, 6-arm with Mw of 120 and 245 kg/mol, 4-arm with Mw of 123 kg/mol, and three linear PLLAs with Mw of 121, 240 and 339 kg/mol, were synthesized and examined. The PLLAs were sheared at 170 and 150 °C, at 5/s, 10/s and 20/s for 20 s, 10 s and 5 s, respectively, and then cooled at 10 or 30 °C/min. Shear-induced crystallization during cooling was followed by a light depolarization method, whereas the crystallized specimens were examined by DSC, 2D-WAXS, 2D-SAXS and SEM. The effect of shear depended on the shearing conditions, cooling rate and polymer molar mass but it was also affected by the macromolecular architecture. The shear-induced crystallization of linear PLLA with Mw of 240 kg/mol was more intense than that of the 6-arm polymer with similar Mw, most possibly due to its higher Mz. However, the influence of shear on the crystallization of the star polymers with Mw close to 120 kg/mol was stronger than on that of their linear analog. This was reflected in higher crystallization temperature, as well as crystallinity achieved during cooling.

10.
PLoS One ; 16(10): e0258641, 2021.
Article in English | MEDLINE | ID: mdl-34648584

ABSTRACT

The assessment of the suitability of existing buildings for implementation of green roofs is an important research issue, especially in the context of Urban Heat Island (UHI), the negative impacts of which are locally exacerbated by the global warming. The studies carried out so far have covered a variety of buildings and have taken into account a range of different conditions. Relatively little attention has been paid to the possibilities of greening the roofs of prefabricated apartment blocks from the second half of the 20th century in the context of the potential climate effect. Yet, these buildings are found in many cities around the world, and seem in fact attractive for greening. In view of the above, we proposed a three-stage investigatory procedure to: (I) identify and classify buildings based on the number of floors and the rooftop available area; (II) select buildings by designating priority areas depending on the highest UHI intensity and roof density; (III) analyse the roof load capacity to develop retrofit scenarios. The procedure was applied to prefabricated housing estates built in the 1970s and 1980s in Wroclaw, Poland. The research shows that there are 1962 buildings of different heights and roof area of 722405 m2, of which 480 buildings with a roof area of 122749.1 m2 were selected for greening within priority areas. The structure of the studied roofs was not designed to carry additional loads, which requires the application of complementary solutions. Scenario 1 assumes extensive greening provided that the existing ventilated roof is strengthened, scenario 2 -semi-intensive greening, which however requires the conversion of the ventilated roof to a non-ventilated one. The presented procedure can be applied in any other city with prefabricated apartment blocks and available UHI data, and serve to support the decision to implement green roofs to mitigate UHI.


Subject(s)
Construction Materials , Cities , Global Warming , Hot Temperature , Housing , Poland
11.
Cells ; 10(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34571840

ABSTRACT

Helicobacter pylori (H. pylori) is most known to cause a wide spectrum of gastrointestinal impairments; however, an increasing number of studies indicates that H. pylori infection might be involved in numerous extragastric diseases such as neurological, dermatological, hematologic, ocular, cardiovascular, metabolic, hepatobiliary, or even allergic diseases. In this review, we focused on the nervous system and aimed to summarize the findings regarding H. pylori infection and its involvement in the induction/progression of neurological disorders. Neurological impairments induced by H. pylori infection are primarily due to impairments in the gut-brain axis (GBA) and to an altered gut microbiota facilitated by H. pylori colonization. Currently, regarding a potential relationship between Helicobacter infection and neurological disorders, most of the studies are mainly focused on H. pylori.


Subject(s)
Central Nervous System/microbiology , Gastrointestinal Microbiome/physiology , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Nervous System Diseases/etiology , Nervous System Diseases/microbiology , Animals , Humans
12.
J Clin Med ; 10(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34501259

ABSTRACT

Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease (PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below 0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the patient's life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may occur in the course of other conditions or result from their treatment. It is hypothesized that allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.

13.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34502425

ABSTRACT

NKT cells comprise three subsets-type I (invariant, iNKT), type II, and NKT-like cells, of which iNKT cells are the most studied subset. They are capable of rapid cytokine production after the initial stimulus, thus they may be important for polarisation of Th cells. Due to this, they may be an important cell subset in autoimmune diseases. In the current review, we are summarising results of NKT-oriented studies in major neurological autoimmune diseases-multiple sclerosis, myasthenia gravis, and Guillain-Barre syndrome and their corresponding animal models.


Subject(s)
Guillain-Barre Syndrome/immunology , Killer Cells, Natural/immunology , Multiple Sclerosis/immunology , Myasthenia Gravis/immunology , Natural Killer T-Cells/immunology , Animals , Guillain-Barre Syndrome/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Killer Cells, Natural/pathology , Multiple Sclerosis/pathology , Myasthenia Gravis/pathology , Natural Killer T-Cells/pathology
14.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209289

ABSTRACT

The continually evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in a vast number of either acute or chronic medical impairments of a pathophysiology that is not yet fully understood. SARS-CoV-2 tropism for the organs is associated with bilateral organ cross-talks as well as targeted dysfunctions, among which acute kidney injury (AKI) seems to be highly prevalent in infected patients. The need for efficient management of COVID-related AKI patients is an aspect that is still being investigated by nephrologists; however, another reason for concern is a disturbingly high proportion of various types of kidney dysfunctions in patients who have recovered from COVID-19. Even though the clinical picture of AKI and COVID-related AKI seems to be quite similar, it must be considered that regarding the latter, little is known about both the optimal management and long-term consequences. These discrepancies raise an urgent need for further research aimed at evaluating the molecular mechanisms associated with SARS-CoV-2-induced kidney damage as well as standardized management of COVID-related AKI patients. The following review presents a comprehensive and most-recent insight into the pathophysiology, clinical manifestations, recommended patient management, treatment strategies, and post-mortem findings in patients with COVID-related AKI.


Subject(s)
Acute Kidney Injury/diagnosis , COVID-19/pathology , Acute Kidney Injury/etiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Biomarkers/metabolism , COVID-19/complications , COVID-19/virology , Glomerular Filtration Rate , Humans , Interleukin-6/metabolism , Renin-Angiotensin System , Rhabdomyolysis/etiology , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
15.
J Agric Food Chem ; 69(23): 6444-6454, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34100602

ABSTRACT

The proteins in the starchy endosperm of wheat determine wheat quality and exhibit a quantitative gradient decreasing from the outer to inner endosperm. Here, we investigate how protein-rich sub-aleurone cells contribute to the protein content and gradient by studying three cultivars, each cultivated at three levels of nitrogen (N)-fertilization. The observed increased protein content with increased N-fertilization was cultivar-dependent. Image analysis showed that the underlying protein gradient could be described by a declining biexponential curve, with protein contents up to 32.0% in the sub-aleurone. Cultivars did not differ in protein content in the center of the cheeks and only differed in the outer endosperm when N-fertilization is applied. N-Fertilization resulted in relatively higher increases in protein content in the outer compared to inner endosperm. Hence, sub-aleurone cells could affect the classification of cultivars by baking quality. Cultivar selection and N-fertilization could furthermore be promising techniques to produce protein-rich miller's bran.


Subject(s)
Endosperm , Triticum , Endosperm/genetics , Fertilization , Plant Proteins/genetics
16.
Materials (Basel) ; 13(22)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202639

ABSTRACT

Reversible deactivation radical polymerizations with reduced amount of organometallic catalyst are currently a field of interest of many applications. One of the very promising techniques is photoinduced atom transfer radical polymerization (photo-ATRP) that is mainly studied for copper catalysts in the solution. Recently, advantageous iron-catalyzed photo-ATRP (photo-Fe-ATRP) compatible with high demanding biological applications was presented. In response to that, we developed surface-initiated photo-Fe-ATRP (SI-photo-Fe-ATRP) that was used for facile synthesis of poly(methyl methacrylate) brushes with the presence of only 200 ppm of FeBr3/tetrabutylammonium bromide catalyst (FeBr3/TBABr) under visible light irradiation (wavelength: 450 nm). The kinetics of both SI-photo-Fe-ATRP and photo-Fe-ATRP in solution were compared and followed by 1H NMR, atomic force microscopy (AFM) and gel permeation chromatography (GPC). Brush grafting densities were determined using two methodologies. The influence of the sacrificial initiator on the kinetics of brush growth was studied. It was found that SI-photo-Fe-ATRP could be effectively controlled even without any sacrificial initiators thanks to in situ production of ATRP initiator in solution as a result of reaction between the monomer and Br radicals generated in photoreduction of FeBr3/TBABr. The optimized and simplified reaction setup allowed synthesis of very thick (up to 110 nm) PMMA brushes at room temperature, under visible light with only 200 ppm of iron-based catalyst. The same reaction conditions, but with the presence of sacrificial initiator, enabled formation of much thinner layers (18 nm).

17.
J Exp Bot ; 69(12): 3117-3126, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29660003

ABSTRACT

Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.


Subject(s)
Endosperm/physiology , Nitrogen/metabolism , Plant Proteins/metabolism , Temperature , Triticum/physiology , High-Throughput Screening Assays
18.
Colloids Surf B Biointerfaces ; 159: 820-828, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28888199

ABSTRACT

Here we report the first of the phenosafranin-chlorambucil conjugate as a new type of a chemotherapeutic agent suitable for dual detection methods (spectrophotometric and fluorescence) in imaging systems and cancer treatment. The synthetic cationic dye (3,7-diamino-5-phenylphenazinium chloride) is used as a fluorescent light-triggered scaffold that acts as a carrier for an anti-cancer drug. The chlorambucil was attached covalently via amide bonds to the bifunctional fluorophore, which facilitates tracking with visible light. Our studies revealed that the new photosensitive compound exhibits improved intrinsic activity in vitro in HeLa cells culture experiments; thus it could be a potential anti-cancer candidate in theranostic drug-delivery systems. In light of the urgent need for in vivo monitoring of the biodistribution of anti-cancer drugs, this strategy for the synthesis of innovative conjugates based on the phenosafranin backbone offers a promising possibility for drug control in anti-cancer therapy and diagnosis. This aspect makes the phenosafranin-chlorambucil conjugate unique among currently available biomarkers.


Subject(s)
Antineoplastic Agents/chemistry , Chlorambucil/chemistry , Phenazines/chemistry , Drug Delivery Systems/methods , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...