Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Oncol ; 23(6): 758-767, 2022 06.
Article in English | MEDLINE | ID: mdl-35588752

ABSTRACT

BACKGROUND: Treatment options for malignant pleural mesothelioma are scarce. Tazemetostat, a selective oral enhancer of zeste homolog 2 (EZH2) inhibitor, has shown antitumour activity in several haematological cancers and solid tumours. We aimed to evaluate the anti-tumour activity and safety of tazemetostat in patients with measurable relapsed or refractory malignant pleural mesothelioma. METHODS: We conducted an open-label, single-arm phase 2 study at 16 hospitals in France, the UK, and the USA. Eligible patients were aged 18 years or older with malignant pleural mesothelioma of any histology that was relapsed or refractory after treatment with at least one pemetrexed-containing regimen, an Eastern Cooperative Oncology Group performance status of 0 or 1, and a life expectancy of greater than 3 months. In part 1 of the study, participants received oral tazemetostat 800 mg once on day 1 and then twice daily from day 2 onwards. In part 2, participants received oral tazemetostat 800 mg twice daily starting on day 1 of cycle 1, using a two-stage Green-Dahlberg design. Tazemetostat was administered in 21-day cycles for approximately 17 cycles. The primary endpoint of part 1 was the pharmacokinetics of tazemetostat and its metabolite at day 15 after administration of 800 mg tazemetostat, as measured by maximum serum concentration (Cmax), time to Cmax (Tmax), area under the concentration-time curve (AUC) to day 15 (AUC0-t), area under the curve from time 0 extrapolated to infinity (AUC0-∞), and the half-life (t1/2) of tazemetostat, assessed in all patients enrolled in part 1. The primary endpoint of part 2 was the disease control rate (the proportion of patients with a complete response, partial response, or stable disease) at week 12 in patients with malignant pleural mesothelioma per protocol with BAP1 inactivation determined by immunohistochemistry. The safety population included all the patients who had at least one post-dose safety assessment. This trial is now complete and is registered with ClinicalTrials.gov, NCT02860286. FINDINGS: Between July 29, 2016, and June 2, 2017, 74 patients were enrolled (13 in part 1 and 61 in part 2) and received tazemetostat, 73 (99%) of whom had BAP1-inactivated tumours. In part 1, following repeat dosing of tazemetostat at steady state, on day 15 of cycle 1, the mean Cmax was 829 ng/mL (coefficient of variation 56·3%), median Tmax was 2 h (range 1-4), mean AUC0-twas 3310 h·ng/mL (coefficient of variation 50·4%), mean AUC0-∞ was 3180 h·ng/mL (46·6%), and the geometric mean t1/2 was 3·1 h (13·9%). After a median follow-up of 35·9 weeks (IQR 20·6-85·9), the disease control rate in part 2 in patients with BAP1-inactivated malignant pleural mesothelioma was 54% (95% CI 42-67; 33 of 61 patients) at week 12. No patients had a confirmed complete response. Two patients had a confirmed partial response: one had an ongoing partial response with a duration of 18 weeks and the other had a duration of 42 weeks. The most common grade 3-4 treatment-emergent adverse events were hyperglycaemia (five [7%] patients), hyponatraemia (five [7%]), and anaemia (four [5%]); serious adverse events were reported in 25 (34%) of 74 patients. Five (7%) of 74 patients died while on study; no treatment-related deaths occurred. INTERPRETATION: Further refinement of biomarkers for tazemetostat activity in malignant pleural mesothelioma beyond BAP1 inactivation could help identify a subset of tumours that are most likely to derive prolonged benefit or shrinkage from this therapy. FUNDING: Epizyme.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Neoplasms , Benzamides/adverse effects , Biphenyl Compounds , Enhancer of Zeste Homolog 2 Protein/genetics , Enzyme Inhibitors/therapeutic use , Humans , Mesothelioma/drug therapy , Mesothelioma/pathology , Morpholines/therapeutic use , Neoplasms/chemically induced , Pyridones , Tumor Suppressor Proteins , Ubiquitin Thiolesterase
2.
Clin Cancer Res ; 25(7): 2064-2071, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30642912

ABSTRACT

PURPOSE: We sought to determine the mechanism of an exceptional response in a patient diagnosed with a SMARCB1/INI1-negative chordoma treated with tazemetostat, an EZH2 inhibitor, and followed by radiotherapy.Patient and Methods: In an attempt to investigate the mechanism behind this apparent abscopal effect, we interrogated tumor tissues obtained over the clinical course. We utilized next-generation sequencing, standard IHC, and employed a novel methodology of multiplex immunofluorescence analysis. RESULTS: We report an exceptional and durable response (2+ years) in a patient with SMARCB1-deleted, metastatic, poorly differentiated chordoma, a lethal disease with an overall survival of 6 months. The patient was treated for 4 weeks with tazemetostat, an EZH2 inhibitor, in a phase II clinical trial. At the time of progression she underwent radiation to the primary site and unexpectedly had a complete response at distant metastatic sites. We evaluated baseline and on-treatment tumor biopsies and demonstrate that tazemetostat resulted in pharmacodynamic inhibition of EZH2 as seen by decrease in histone trimethylation at H3K27. Tazemetostat resulted in a significant increase in intratumoral and stromal infiltration by proliferative (high Ki-67), CD8+ T cells, FoxP3+ regulatory T cells, and immune cells expressing checkpoint regulators PD-1 and LAG-3. These changes were pronounced in the stroma. CONCLUSIONS: These observations are the first demonstration in patient samples confirming that EZH2 inhibition can promote a sustained antitumor response that ultimately leads to T-cell exhaustion and checkpoint activation. This suggests that targeted alteration of the epigenetic landscape may sensitize some tumors to checkpoint inhibitors.


Subject(s)
Chordoma/etiology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Immunomodulation , SMARCB1 Protein/deficiency , Adult , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biopsy , Cell Line, Tumor , Chordoma/metabolism , Chordoma/pathology , Chordoma/therapy , Combined Modality Therapy , Disease Models, Animal , Exons , Female , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mutation , Neoplasm Grading , Neoplasm Staging , Radiotherapy , SMARCB1 Protein/metabolism , Tomography, X-Ray Computed , Treatment Outcome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 13(2): 386-98, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24344235

ABSTRACT

The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Paracrine Communication/drug effects , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/immunology , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , HT29 Cells , Hedgehog Proteins/immunology , Humans , Kinetics , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , NIH 3T3 Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Paracrine Communication/immunology , Protein Binding/immunology , Rats, Wistar , Stromal Cells/drug effects , Stromal Cells/immunology , Stromal Cells/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
4.
MAbs ; 4(6): 710-23, 2012.
Article in English | MEDLINE | ID: mdl-23007574

ABSTRACT

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Proto-Oncogene Proteins c-met/immunology , Animals , Carcinogenesis/drug effects , Carcinogenesis/immunology , Cell Growth Processes/drug effects , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/immunology , Hepatocyte Growth Factor/metabolism , Humans , Immunodominant Epitopes/immunology , Mice , Mice, Nude , Morphogenesis/drug effects , NIH 3T3 Cells , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics , Transgenes/genetics , Xenograft Model Antitumor Assays
5.
J Nucl Med ; 49(1): 129-134, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18077531

ABSTRACT

UNLABELLED: The purpose of this study was to evaluate the efficacy of CE-355621, a novel antibody against c-Met, in a subcutaneous U87 MG xenograft mouse model using (18)F-FDG small-animal PET. METHODS: CE-355621 or control vehicle was administered intraperitoneally into nude mice (drug-treated group, n = 12; control group, n = 14) with U87 MG subcutaneous tumor xenografts. Drug efficacy was evaluated over 2 wk using (18)F-FDG small-animal PET and compared with tumor volume growth curves. RESULTS: The maximum %ID/g (percentage injected dose per gram of tissue) of (18)F-FDG accumulation in mice treated with CE-355621 remained essentially unchanged over 2 wk, whereas the %ID/g of the control tumors increased 66% compared with the baseline. Significant inhibition of (18)F-FDG accumulation was seen 3 d after drug treatment, which was earlier than the inhibition of tumor volume growth seen at 7 d after drug treatment. CONCLUSION: CE-355621 is an efficacious novel antineoplastic chemotherapeutic agent that inhibits (18)F-FDG accumulation earlier than tumor volume changes in a mouse xenograft model. These results support the use of (18)F-FDG PET to assess early tumor response for CE-355621.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Fluorodeoxyglucose F18/pharmacokinetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Radiopharmaceuticals/pharmacokinetics , Animals , Cell Line, Tumor , Drug Antagonism , Glioblastoma , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Positron-Emission Tomography/methods , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL