Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Mol Plant Microbe Interact ; 35(7): 604-615, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35322688

ABSTRACT

The general stress response (GSR) enables bacteria to sense and overcome a variety of environmental stresses. In alphaproteobacteria, stress-perceiving histidine kinases of the HWE and HisKA_2 families trigger a signaling cascade that leads to phosphorylation of the response regulator PhyR and, consequently, to activation of the GSR σ factor σEcfG. In the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens, PhyR and σEcfG are crucial for tolerance against a variety of stresses under free-living conditions and also for efficient infection of its symbiotic host soybean. However, the molecular players involved in stress perception and activation of the GSR remained largely unknown. In this work, we first showed that a mutant variant of PhyR where the conserved phosphorylatable aspartate residue D194 was replaced by alanine (PhyRD194A) failed to complement the ΔphyR mutant in symbiosis, confirming that PhyR acts as a response regulator. To identify the PhyR-activating kinases in the nitrogen-fixing symbiont, we constructed in-frame deletion mutants lacking single, distinct combinations, or all of the 11 predicted HWE and HisKA_2 kinases, which we named HRXXN histidine kinases HhkA through HhkK. Phenotypic analysis of the mutants and complemented derivatives identified two functionally redundant kinases, HhkA and HhkE, that are required for nodulation competitiveness and during initiation of symbiosis. Using σEcfG-activity reporter strains, we further showed that both HhkA and HhkE activate the GSR in free-living cells exposed to salt and hyperosmotic stress. In conclusion, our data suggest that HhkA and HhkE trigger GSR activation in response to osmotically stressful conditions which B. diazoefficiens encounters during soybean host infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bradyrhizobium , Histidine , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Nitrogen , Phosphotransferases , Sodium Chloride , Glycine max/microbiology , Stress, Physiological , Symbiosis
2.
Molecules ; 26(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577057

ABSTRACT

Resveratrol, a natural plant phytoalexin, is produced in response to fungal infection or- UV irradiation. It exists as an isomeric pair with cis- and trans-conformation. Whereas multiple physiological effects of the trans-form, including a pronounced anti-tumoral activity, are nowadays elucidated, much less knowledge exists concerning the cis-isomer. In our work, we analyzed the antiproliferative and cytotoxic properties of cis-resveratrol in four different human tumor entities in direct comparison to trans-resveratrol. We used human cell lines as tumor models for hepatocellular carcinoma (HCC; HepG2, Hep3B), colon carcinoma (HCT-116, HCT-116/p53(-/-)), pancreatic carcinoma (Capan-2, MiaPaCa-2), and renal cell carcinoma (A498, SN12C). Increased cytotoxicity in all investigated tumor cells was observed for the trans-isomer. To verify possible effects of the tumor suppressor p53 on resveratrol-induced cell death, we used wild type and p53-deleted or -mutated cell lines for every tested tumor entity. Applying viability and cytotoxicity assays, we demonstrated a differential, dose-dependent sensitivity towards cis- or trans-resveratrol among the respective tumor types.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Resveratrol , Tumor Suppressor Protein p53 , Antineoplastic Agents , Apoptosis/drug effects , Humans
3.
Mem. Inst. Oswaldo Cruz ; 90(2): 185-189, Mar.-Apr. 1995.
Article in English | LILACS | ID: lil-319902

ABSTRACT

We have established an in vitro culture system for adult schistosomes that allows monitoring gene expression for up to more than ten days. Comparing female worms that are paired with those that have been separated, we find distinct differences, clearly documenting an influence of the male in female gene expression. In perfect coincidence with classical observations that were based on histological techniques, we find that the male particularly regulates gene expression in those tissues that are characterized by cell proliferation, e.g. the vitellaria. From these results, we hypothesize that the key target for the inductive signal that is transferred from the male to the female during pairing is the activation of a growth factor that stimulates mitotic proliferation.


Subject(s)
Animals , Cricetinae , Female , Male , Schistosoma mansoni , Blotting, Northern , DNA, Helminth , Fertility , Gene Expression Regulation , Genes, Helminth , Schistosoma mansoni , Time Factors , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...