Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Control Release ; 352: 994-1008, 2022 12.
Article in English | MEDLINE | ID: mdl-36370877

ABSTRACT

Wireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-ß delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-ß production. Wireless optoelectronic device integration was developed using additive manufacturing and injection molding. Implant cell-based optoelectronic interface manufacturing was established to integrate industrial flexible compact low-resistance screen-printed Near Field Communication (NFC) coil antenna. Optogenetic cell-based implant biocompatibility, and device performances were evaluated in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Humans , Multiple Sclerosis/therapy , Encephalomyelitis, Autoimmune, Experimental/therapy , Interferon-beta/genetics , Interferon-beta/metabolism , Disease Models, Animal , Gene Expression , Mice, Inbred C57BL
2.
Porto Biomed J ; 2(5): 145-149, 2017.
Article in English | MEDLINE | ID: mdl-32258609

ABSTRACT

Resort to medications dates back million years ago with the use of medicinal plants. In the nineteenth century, significant contributions in medicine appeared in different domains, among which the invention of a specific drug delivery device; the syringe. Nowadays, injection therapy of bio-manufactured drugs is routine practice for chronic diseases but remains constraining and painful. New emerging advanced therapies invest in genetic, electronics and cell-based therapy for addressing unmet needs for the caregivers and the patient. As digital process in health (eHealth) gains momentum, connected advanced bio-electronic devices now offer new strategies for personalized injection therapies. In this review, we take a journey along the genesis path of a new drug delivery system: the Optogenerapy, a synergy between optogenetic and gene therapy. Inside a bio-electronic implant, electronics and optogenetics are interfaced by light as a traceless inducer signal. By controlling a synthetic optogenetic pathway in the cell, therapeutics delivery can be fine-tuned with a precise spatiotemporal control. The technology holds promise of a new modern syringe era capable of producing a drug of interest at will directly inside the patient.

SELECTION OF CITATIONS
SEARCH DETAIL