Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 4389, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902575

ABSTRACT

Understanding and controlling the rheology of polymeric complex fluids that are pushed out-of-equilibrium is a fundamental problem in both industry and biology. For example, to package, repair, and replicate DNA, cells use enzymes to constantly manipulate DNA topology, length, and structure. Inspired by this feat, here we engineer and study DNA-based complex fluids that undergo enzymatically-driven topological and architectural alterations via restriction endonuclease (RE) reactions. We show that these systems display time-dependent rheological properties that depend on the concentrations and properties of the comprising DNA and REs. Through time-resolved microrheology experiments and Brownian Dynamics simulations, we show that conversion of supercoiled to linear DNA topology leads to a monotonic increase in viscosity. On the other hand, the viscosity of entangled linear DNA undergoing fragmentation displays a universal decrease that we rationalise using living polymer theory. Finally, to showcase the tunability of these behaviours, we design a DNA fluid that exhibits a time-dependent increase, followed by a temporally-gated decrease, of its viscosity. Our results present a class of polymeric fluids that leverage naturally occurring enzymes to drive diverse time-varying rheology by performing architectural alterations to the constituents.


Subject(s)
DNA , Polymers , Digestion , Rheology , Viscosity
2.
Nat Commun ; 12(1): 5756, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599163

ABSTRACT

The discovery that overexpressing one or a few critical transcription factors can switch cell state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide association studies (GWAS) point to complex phenotypes being determined by hundreds of loci that rarely encode transcription factors and which individually have small effects. Here, we use computer simulations and a simple fitting-free polymer model of chromosomes to show that spatial correlations arising from 3D genome organisation naturally lead to stochastic and bursty transcription as well as complex small-world regulatory networks (where the transcriptional activity of each genomic region subtly affects almost all others). These effects require factors to be present at sub-saturating levels; increasing levels dramatically simplifies networks as more transcription units are pressed into use. Consequently, results from GWAS can be reconciled with those involving overexpression. We apply this pan-genomic model to predict patterns of transcriptional activity in whole human chromosomes, and, as an example, the effects of the deletion causing the diGeorge syndrome.


Subject(s)
Gene Regulatory Networks , Genome, Human , Models, Genetic , Transcription Factors/metabolism , Chromatin/chemistry , Chromatin/metabolism , Chromosomes, Human/chemistry , Chromosomes, Human/metabolism , Genome-Wide Association Study , Humans , Polymers/chemistry , Polymers/metabolism , Quantitative Trait Loci , Transcription, Genetic
3.
J R Soc Interface ; 18(181): 20210229, 2021 08.
Article in English | MEDLINE | ID: mdl-34428944

ABSTRACT

We theoretically study the integration of short viral DNA in a DNA braid made up by two entwined double-stranded DNA molecules. We show that the statistics of single integration events substantially differ in the straight and buckled, or plectonemic, phase of the braid and are more likely in the latter. We further discover that integration is most likely close to plectoneme tips, where the larger bending energy helps overcome the associated energy barrier and that successive integration events are spatio-temporally correlated, suggesting a potential mechanistic explanation of clustered integration sites in host genomes. The braid geometry we consider provides a novel experimental set-up to quantify integration in a supercoiled substrate in vitro, and to better understand the role of double-stranded DNA topology during this process.


Subject(s)
DNA, Superhelical , DNA , Nucleic Acid Conformation
4.
Phys Rev Lett ; 124(19): 198101, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469558

ABSTRACT

Vital biological processes such as genome repair require fast and efficient binding of selected proteins to specific target sites on DNA. Here we propose an active target search mechanism based on "chromophoresis," the dynamics of DNA-binding proteins up or down gradients in the density of epigenetic marks, or colors (biochemical tags on the genome). We focus on a set of proteins that deposit marks from which they are repelled-a case which is only encountered away from thermodynamic equilibrium. For suitable ranges of kinetic parameter values, chromophoretic proteins can perform undirectional motion and are optimally redistributed along the genome. Importantly, they can also locally unravel a region of the genome which is collapsed due to self-interactions and "dive" deep into its core, for a striking enhancement of the efficiency of target search on such an inaccessible substrate. We discuss the potential relevance of chromophoresis for DNA repair.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA/genetics , DNA/metabolism , Genome, Human , Models, Genetic , Chromatin/genetics , Chromatin/metabolism , Computer Simulation , DNA Damage , DNA Repair , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Humans , Models, Molecular , Poly Adenosine Diphosphate Ribose/genetics , Poly Adenosine Diphosphate Ribose/metabolism
5.
Soft Matter ; 16(9): 2406-2414, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32067018

ABSTRACT

We use Brownian dynamics simulations to study the formation of chromatin loops through diffusive sliding of slip-link-like proteins, mimicking the behaviour of cohesin molecules. We recently proposed that diffusive sliding is sufficient to explain the extrusion of chromatin loops of hundreds of kilo-base-pairs (kbp), which may then be stabilised by interactions between cohesin and CTCF proteins. Here we show that the flexibility of the chromatin fibre strongly affects this dynamical process, and find that diffusive loop extrusion is more efficient on stiffer chromatin regions. We also show that the dynamics of loop formation are faster in confined and collapsed chromatin conformations but that this enhancement is counteracted by the increased crowding. We provide a simple theoretical argument explaining why stiffness and collapsed conformations favour diffusive extrusion. In light of the heterogeneous physical and conformational properties of eukaryotic chromatin, we suggest that our results are relevant to understand the looping and organisation of interphase chromosomes in vivo.


Subject(s)
Chromatin/chemistry , Chromosomes/chemistry , Eukaryota/genetics , Animals , CCCTC-Binding Factor/chemistry , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/genetics , Chromosomes/metabolism , Diffusion , Eukaryota/chemistry , Eukaryota/metabolism , Humans , Models, Biological , Cohesins
6.
Soft Matter ; 15(29): 5995-6005, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31292585

ABSTRACT

We present a generic coarse-grained model to describe molecular motors acting on polymer substrates, mimicking, for example, RNA polymerase on DNA or kinesin on microtubules. The polymer is modeled as a connected chain of beads; motors are represented as freely diffusing beads which, upon encountering the substrate, bind to it through a short-ranged attractive potential. When bound, motors and polymer beads experience an equal and opposite active force, directed tangential to the polymer; this leads to motion of the motors along the polymer contour. The inclusion of explicit motors differentiates our model from other recent active polymer models. We study, by means of Langevin dynamics simulations, the effect of the motor activity on both the conformational and dynamical properties of the substrate. We find that activity leads, in addition to the expected enhancement of polymer diffusion, to an effective reduction of its persistence length. We discover that this effective "softening" is a consequence of the emergence of double-folded branches, or hairpins, and that it can be tuned by changing the number of motors or the force they generate. Finally, we investigate the effect of the motors on the probability of knot formation. Counter-intuitively our simulations reveal that, even though at equilibrium a more flexible substrate would show an increased knotting probability, motor activity leads to a marked decrease in the occurrence of knotted conformations with respect to equilibrium.

7.
Nat Commun ; 10(1): 575, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718508

ABSTRACT

Certain retroviruses, including HIV, insert their DNA in a non-random fraction of the host genome via poorly understood selection mechanisms. Here, we develop a biophysical model for retroviral integration as stochastic and quasi-equilibrium topological reconnections between polymers. We discover that physical effects, such as DNA accessibility and elasticity, play important and universal roles in this process. Our simulations predict that integration is favoured within nucleosomal and flexible DNA, in line with experiments, and that these biases arise due to competing energy barriers associated with DNA deformations. By considering a long chromosomal region in human T-cells during interphase, we discover that at these larger scales integration sites are predominantly determined by chromatin accessibility. Finally, we propose and solve a reaction-diffusion problem that recapitulates the distribution of HIV hot-spots within T-cells. With few generic assumptions, our model can rationalise experimental observations and identifies previously unappreciated physical contributions to retroviral integration site selection.


Subject(s)
Genome, Human/genetics , Retroviridae/genetics , DNA/genetics , HIV-1/genetics , Humans , Nucleosomes/genetics , Nucleosomes/metabolism , T-Lymphocytes/metabolism
8.
Nucleus ; 9(1): 95-103, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29300120

ABSTRACT

Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is the only model to date which can explain this. However, the model requires a motor to generate the loops, and although cohesin is a strong candidate for the extruding factor, a suitable motor protein (or a motor activity in cohesin itself) has yet to be found. Here we explore a new hypothesis: that there is no motor, and thermal motion within the nucleus drives extrusion. Using theoretical modelling and computer simulations we ask whether such diffusive extrusion could feasibly generate loops. Our simulations uncover an interesting ratchet effect (where an osmotic pressure promotes loop growth), and suggest, by comparison to recent in vitro and in vivo measurements, that diffusive extrusion can in principle generate loops of the size observed in the data. Extra View on : C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo "Non-equilibrium chromosome looping via molecular slip-links", Physical Review Letters 119 138101 (2017).


Subject(s)
Cell Nucleus/genetics , Genome, Human/genetics , Models, Genetic , Cell Nucleus/metabolism , Humans , Molecular Dynamics Simulation
9.
Sci Rep ; 7(1): 14642, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116102

ABSTRACT

The spreading and regulation of epigenetic marks on chromosomes is crucial to establish and maintain cellular identity. Nonetheless, the dynamic mechanism leading to the establishment and maintenance of tissue-specific, epigenetic pattern is still poorly understood. In this work we propose, and investigate in silico, a possible experimental strategy to illuminate the interplay between 3D chromatin structure and epigenetic dynamics. We consider a set-up where a reconstituted chromatin fibre is stretched at its two ends (e.g., by laser tweezers), while epigenetic enzymes (writers) and chromatin-binding proteins (readers) are flooded into the system. We show that, by tuning the stretching force and the binding affinity of the readers for chromatin, the fibre undergoes a sharp transition between a stretched, epigenetically disordered, state and a crumpled, epigenetically coherent, one. We further investigate the case in which a knot is tied along the chromatin fibre, and find that the knotted segment enhances local epigenetic order, giving rise to "epigenetic solitons" which travel and diffuse along chromatin. Our results point to an intriguing coupling between 3D chromatin topology and epigenetic dynamics, which may be investigated via single molecule experiments.


Subject(s)
Algorithms , Chromatin , Epigenesis, Genetic , Gene Expression Regulation , Chromosomes, Human , Computer Simulation , Humans , Models, Biological , Models, Statistical
10.
Phys Rev Lett ; 119(11): 118002, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28949232

ABSTRACT

There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.


Subject(s)
DNA/chemistry , Nucleic Acid Denaturation , Plasmids , DNA, Superhelical , Nucleic Acid Conformation
11.
Phys Rev Lett ; 119(13): 138101, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29341686

ABSTRACT

We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.


Subject(s)
CCCTC-Binding Factor/chemistry , Chromosomes/chemistry , Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Diffusion , Genome , Models, Molecular , Nucleic Acid Conformation , Cohesins
12.
Soft Matter ; 12(47): 9458-9470, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27845464

ABSTRACT

The computational modelling of DNA is becoming crucial in light of new advances in DNA nano-technology, single-molecule experiments and in vivo DNA tampering. Here we present a mesoscopic model for double stranded DNA (dsDNA) at the single nucleotide level which retains the characteristic helical structure, while being able to simulate large molecules - up to a million base pairs - for time-scales which are relevant to physiological processes. This is made possible by an efficient and highly-parallelised implementation of the model which we discuss here. The model captures the main characteristics of DNA, such as the different persistence lengths for double and single strands, pitch, torsional rigidity and the presence of major and minor grooves. The model constitutes a starting point for the future implementation of further features, such as sequence specificity and electrostatic repulsion. We show that the behaviour of the presented model compares favourably with single molecule experiments where dsDNA is manipulated by external forces or torques. We finally present some results on the kinetics of denaturation of linear DNA and supercoiling of closed dsDNA molecules.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Nucleotides/chemistry , Kinetics , Nanotechnology
13.
Nucleus ; 7(5): 453-461, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27841970

ABSTRACT

We discuss a polymer model for the 3D organization of human chromosomes. A chromosome is represented by a string of beads, with each bead being "colored" according to 1D bioinformatic data (e.g., chromatin state, histone modification, GC content). Individual spheres (representing bi- and multi-valent transcription factors) can bind reversibly and selectively to beads with the appropriate color. During molecular dynamics simulations, the factors bind, and the string spontaneously folds into loops, rosettes, and topologically-associating domains (TADs). This organization occurs in the absence of any specified interactions between distant DNA segments, or between transcription factors. A comparison with Hi-C data shows that simulations predict the location of most boundaries between TADs correctly. The model is "fitting-free" in the sense that it does not use Hi-C data as an input; consequently, one of its strengths is that it can - in principle - be used to predict the 3D organization of any region of interest, or whole chromosome, in a given organism, or cell line, in the absence of existing Hi-C data. We discuss how this simple model might be refined to include more transcription factors and binding sites, and to correctly predict contacts between convergent CTCF binding sites.


Subject(s)
Chromosomes, Human/chemistry , Models, Molecular , Chromosomes, Human/metabolism , Humans , Molecular Conformation
14.
Soft Matter ; 12(47): 9485-9500, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27781227

ABSTRACT

One of the most challenging problems in polymer physics is providing a theoretical description for the behaviour of rings in dense solutions and melts. Although it is nowadays well established that the overall size of a ring in these conditions scales like that of a collapsed globule, there is compelling evidence that rings may exhibit ramified and tree-like conformations. In this work I show how to characterise these local tree-like structures by measuring the local writhing of the rings' segments and by identifying the patterns of intra-chain contacts. These quantities reveal two major topological structures: loops and terminal branches which strongly suggest that the strictly double-folded "lattice animal" picture for rings in the melt may be replaced by a more relaxed tree-like structure accommodating loops. In particular, I show that one can identify hierarchically looped structures whose degree increases linearly with the size of a ring, and that terminal branches are found to store about 30% of the whole ring mass, irrespectively of its length. Finally, I draw an analogy between rings in the melt and slip-linked chains, where contact points are enforced by mobile slip-links and for which a field-theoretic treatment can be employed to get some insight into their typical conformations. These findings are ultimately discussed in the light of recent works on the static structure of rings and on the existence of inter-ring threadings.

SELECTION OF CITATIONS
SEARCH DETAIL