Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Med ; 30(3): 875-887, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38438734

ABSTRACT

Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.


Subject(s)
Hernias, Diaphragmatic, Congenital , Pregnancy , Female , Humans , Hernias, Diaphragmatic, Congenital/metabolism , Amniotic Fluid/metabolism , Prenatal Care , Lung/metabolism , Organoids/metabolism
2.
Biomaterials ; 301: 122203, 2023 10.
Article in English | MEDLINE | ID: mdl-37515903

ABSTRACT

Lung infections are one of the leading causes of death worldwide, and this situation has been exacerbated by the emergence of COVID-19. Pre-clinical modelling of viral infections has relied on cell cultures that lack 3D structure and the context of lung extracellular matrices. Here, we propose a bioreactor-based, whole-organ lung model of viral infection. The bioreactor takes advantage of an automated system to achieve efficient decellularization of a whole rat lung, and recellularization of the scaffold using primary human bronchial cells. Automatization allowed for the dynamic culture of airway epithelial cells in a breathing-mimicking setup that led to an even distribution of lung epithelial cells throughout the distal regions. In the sealed bioreactor system, we demonstrate proof-of-concept for viral infection within the epithelialized lung by infecting primary human airway epithelial cells and subsequently injecting neutrophils. Moreover, to assess the possibility of drug screening in this model, we demonstrate the efficacy of the broad-spectrum antiviral remdesivir. This whole-organ scale lung infection model represents a step towards modelling viral infection of human cells in a 3D context, providing a powerful tool to investigate the mechanisms of the early stages of pathogenic infections and the development of effective treatment strategies for respiratory diseases.


Subject(s)
COVID-19 , Pneumonia , Virus Diseases , Rats , Humans , Animals , Lung , Epithelial Cells , Tissue Scaffolds/chemistry
3.
Nat Commun ; 14(1): 3128, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253730

ABSTRACT

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.


Subject(s)
Bioprinting , Organoids , Hydrogels/chemistry , Tissue Engineering/methods , Cell Polarity , Lung
4.
Front Bioeng Biotechnol ; 10: 907159, 2022.
Article in English | MEDLINE | ID: mdl-35935488

ABSTRACT

The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.

5.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Article in English | MEDLINE | ID: mdl-35165418

ABSTRACT

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Energy Metabolism/drug effects , Extracellular Matrix/drug effects , Lung Neoplasms/drug therapy , Mechanotransduction, Cellular/drug effects , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell-Matrix Junctions/drug effects , Cell-Matrix Junctions/metabolism , Cell-Matrix Junctions/pathology , Dynamins/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Peptide Elongation Factors/metabolism , Tumor Microenvironment
6.
Front Cell Neurosci ; 15: 602888, 2021.
Article in English | MEDLINE | ID: mdl-33679325

ABSTRACT

Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% ± 18 PAX6 positive cells) and neurons (38% ± 8 ßIIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% ± 1 ßIIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications.

7.
Pediatr Surg Int ; 37(5): 561-568, 2021 May.
Article in English | MEDLINE | ID: mdl-33787982

ABSTRACT

PURPOSE: This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions. METHODS: Lungs were harvested from mouse embryos at E12.5 and cultured in three different settings, i.e., whole lung culture, mesenchyme-free epithelium culture, and organoid culture. For the whole lung culture, extracted lungs were embedded in Matrigel and incubated on permeable filters. Separately, distal epithelial tips were isolated by firstly removing mesothelial and mesenchymal cells, and then severing the tips from the airway tubes. These were then cultured either in branch-promoting or self-renewing conditions. RESULTS: Cultured whole lungs underwent branching morphogenesis similarly to native lungs. Real-time qPCR analysis demonstrated expression of key genes essential for lung bud formation. The culture condition for epithelial tips was optimized by testing different concentrations of FGF10 and CHIR99021 and evaluating branching formation. The epithelial rudiments in self-renewing conditions formed spherical 3D structures with homogeneous Sox9 expression. CONCLUSION: We report efficient protocols for ex vivo culture systems of pseudoglandular stage mouse embryonic lungs. These models can be applied to human samples and could be useful to paediatric surgeons to investigate normal lung development, understand the pathogenesis of congenital lung diseases, and explore novel therapeutic strategies.


Subject(s)
Disease Models, Animal , Lung Diseases/metabolism , Lung/embryology , Morphogenesis , Abnormalities, Multiple , Animals , Fetal Development , Fetus , Humans , Lung/abnormalities , Mice , Organ Culture Techniques , Organogenesis , Respiration Disorders
8.
Cell Rep ; 33(9): 108453, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264615

ABSTRACT

The specification of the hepatic identity during human liver development is strictly controlled by extrinsic signals, yet it is still not clear how cells respond to these exogenous signals by activating secretory cascades, which are extremely relevant, especially in 3D self-organizing systems. Here, we investigate how the proteins secreted by human pluripotent stem cells (hPSCs) in response to developmental exogenous signals affect the progression from endoderm to the hepatic lineage, including their competence to generate nascent hepatic organoids. By using microfluidic confined environment and stable isotope labeling with amino acids in cell culture-coupled mass spectrometry (SILAC-MS) quantitative proteomic analysis, we find high abundancy of extracellular matrix (ECM)-associated proteins. Hepatic progenitor cells either derived in microfluidics or exposed to exogenous ECM stimuli show a significantly higher potential of forming hepatic organoids that can be rapidly expanded for several passages and further differentiated into functional hepatocytes. These results prove an additional control over the efficiency of hepatic organoid formation and differentiation for downstream applications.


Subject(s)
Extracellular Matrix/metabolism , Liver/physiopathology , Microfluidics/methods , Organoids/physiopathology , Pluripotent Stem Cells/metabolism , Cell Differentiation , Hepatocytes/metabolism , Humans
9.
Nat Commun ; 10(1): 5658, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827102

ABSTRACT

Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth. These gels possess the biochemical signature of tissue-specific ECM and have the potential for clinical translation. Gels from decellularized porcine small intestine (SI) mucosa/submucosa enable formation and growth of endoderm-derived human organoids, such as gastric, hepatic, pancreatic, and SI. ECM gels can be used as a tool for direct human organoid derivation, for cell growth with a stable transcriptomic signature, and for in vivo organoid delivery. The development of these ECM-derived hydrogels opens up the potential for human organoids to be used clinically.


Subject(s)
Endoderm/growth & development , Extracellular Matrix/metabolism , Organoids/growth & development , Animals , Cell Proliferation , Endoderm/metabolism , Extracellular Matrix/chemistry , Humans , Hydrogels/chemistry , Hydrogels/metabolism , Organoids/metabolism , Swine , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry
10.
Ann Biomed Eng ; 47(1): 231-242, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30218223

ABSTRACT

Mechanical stress has been proven to be an important factor interfering with many biological functions through mechano-sensitive elements within the cells. Despite the current interest in mechano-transduction, the development of suitable experimental tools is still characterized by the strife to design a compact device that allows high-magnification real-time imaging of the stretched cells, thus enabling to follow the dynamics of cellular response to mechanical stimulations. Here we present a microfluidic multi-layered chip that allows mechanical deformation of adherent cells maintaining a fixed focal plane, while allowing independent control of the soluble microenvironment. The device was optimized with the aid of FEM simulation and fully characterized in terms of mechanical deformation. Different cell lines were exposed to tunable mechanical strain, which results in continuous area deformation up to 20%. Thanks to the coupling of chemical glass etching, 2-dimensional deformation of a thin elastomeric membrane and microfluidic cell culture, the developed device allows a unique combination of cell mechanical stimulation, in line imaging and accurate control of cell culture microenvironment.


Subject(s)
Lab-On-A-Chip Devices , Biomechanical Phenomena , Cells, Cultured , Epithelial Cells/physiology , Fibroblasts/physiology , Finite Element Analysis , Hot Temperature , Humans , Physical Stimulation , Stress, Mechanical
11.
Nat Methods ; 13(5): 446-52, 2016 05.
Article in English | MEDLINE | ID: mdl-27088312

ABSTRACT

We report that the efficiency of reprogramming human somatic cells to induced pluripotent stem cells (hiPSCs) can be dramatically improved in a microfluidic environment. Microliter-volume confinement resulted in a 50-fold increase in efficiency over traditional reprogramming by delivery of synthetic mRNAs encoding transcription factors. In these small volumes, extracellular components of the TGF-ß and other signaling pathways exhibited temporal regulation that appears critical to acquisition of pluripotency. The high quality and purity of the resulting hiPSCs (µ-hiPSCs) allowed direct differentiation into functional hepatocyte- and cardiomyocyte-like cells in the same platform without additional expansion.


Subject(s)
Cellular Reprogramming Techniques/methods , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , Microfluidics/methods , Cells, Cultured , Fibroblasts/cytology , Humans , RNA, Messenger/genetics
12.
Nat Methods ; 12(7): 637-40, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030445

ABSTRACT

Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.


Subject(s)
Microfluidic Analytical Techniques/methods , Pluripotent Stem Cells/cytology , Cell Differentiation , Embryonic Stem Cells/cytology , Hepatocytes/cytology , Humans , Myocytes, Cardiac/cytology
13.
Cell ; 154(5): 1047-1059, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23954413

ABSTRACT

Key cellular decisions, such as proliferation or growth arrest, typically occur at spatially defined locations within tissues. Loss of this spatial control is a hallmark of many diseases, including cancer. Yet, how these patterns are established is incompletely understood. Here, we report that physical and architectural features of a multicellular sheet inform cells about their proliferative capacity through mechanical regulation of YAP and TAZ, known mediators of Hippo signaling and organ growth. YAP/TAZ activity is confined to cells exposed to mechanical stresses, such as stretching, location at edges/curvatures contouring an epithelial sheet, or stiffness of the surrounding extracellular matrix. We identify the F-actin-capping/severing proteins Cofilin, CapZ, and Gelsolin as essential gatekeepers that limit YAP/TAZ activity in cells experiencing low mechanical stresses, including contact inhibition of proliferation. We propose that mechanical forces are overarching regulators of YAP/TAZ in multicellular contexts, setting responsiveness to Hippo, WNT, and GPCR signaling.


Subject(s)
Actin Capping Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Cell Proliferation , Phosphoproteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Actins/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Breast Neoplasms/pathology , Cell Line, Tumor , Extracellular Matrix/metabolism , Humans , Mechanical Phenomena , Phosphoproteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , YAP-Signaling Proteins
14.
Biophys J ; 104(4): 934-42, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23442972

ABSTRACT

Adenoviruses are commonly used in vitro as gene transfer vectors in multiple applications. Nevertheless, issues such as low infection efficiency and toxicity effects on host cells have not been resolved yet. This work aims at developing a new versatile tool to enhance the expression of transduced genes while working at low viral doses in a sequential manner. We developed a microfluidic platform with automatically controlled sequential perfusion stages, which includes 10 independent channels. In addition, we built a stochastic mathematical model, accounting for the discrete nature of cells and viruses, to predict not only the percentage of infected cells, but also the associated infecting-virus distribution in the cell population. Microfluidic system and mathematical model were coupled to define an efficient experimental strategy. We used human foreskin fibroblasts, infected by replication-incompetent adenoviruses carrying EGFP gene, as the testing system. Cell characterization was performed through fluorescence microscopy, followed by image analysis. We explored the effect of different aspects: perfusion, multiplicity of infection, and temporal patterns of infection. We demonstrated feasibility of performing efficient viral transduction at low doses, by repeated pulses of cell-virus contact. This procedure also enhanced the exogenous gene expression in the sequential microfluidic infection system compared to a single infection at a higher, nontoxic, viral dose.


Subject(s)
Adenoviridae/genetics , Microfluidics , Models, Genetic , Transduction, Genetic , Fibroblasts/metabolism , Fibroblasts/virology , Foreskin/cytology , Gene Expression , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Microscopy, Fluorescence , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...