Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 918: 170410, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38280596

ABSTRACT

Heat stress (HS) is a critical challenge in broilers due to the high metabolic rate and lack of sweat glands. Results from this study show that implementing a cyclic chronic HS (34 °C for 7 h/d) to finisher broilers decreased the diversity of cecal microbiota and impaired intestinal barrier, resulting in gut leak and decreased body weight (both P < 0.05). These alterations might be related to inflammatory outbursts and the retarded proliferation of intestinal epithelial cells (IECs) according to the transcriptome analysis. Considering the potential beneficial properties of Lactobacillus on intestinal development and function, the protective effects of Lactobacillus rhamnosus (L. rhamnosus) on the intestine were investigated under HS conditions in this study. Orally supplemented L. rhamnosus improved the composition of cecal microbiota and upregulated the transcription of tight junction proteins in both duodenum and jejunum, with a consequent suppression in intestinal gene expressions of pro-inflammatory cytokines and facilitation in digestive capability. Meanwhile, the jejunal villus height of the birds that received L. rhamnosus was significantly higher compared with those treated with the broth (P < 0.05). The expression abundances of genes related to IECs proliferation and differentiation were increased by L. rhamnosus, along with upregulated mRNA levels of Wnt3a and ß-catenin in jejunum. In addition, L. rhamnosus attenuated enterocyte apoptosis as indicated by decreased caspase-3 and caspase-9 gene expressions. The results indicated that oral administration with L. rhamnosus mitigated HS-induced dysfunction by promoting intestinal development and epithelial maturation in broilers and that the effects of L. rhamnosus might be dependent of Wnt/ß-catenin signaling.


Subject(s)
Gastrointestinal Microbiome , Heat Stress Disorders , Animals , Chickens , beta Catenin/pharmacology , Lactobacillus , Dietary Supplements/analysis , Heat-Shock Response , Animal Feed/analysis
2.
Poult Sci ; 103(1): 103252, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980762

ABSTRACT

Heat stress (HS) in poultry has deleterious effects on intestinal development and barrier function, along with inflammatory outbursts. In the present study, chronic HS reduced body weight of broilers and activated mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) /nuclear factor kappa B (NF-κB) signaling pathways to elicit the inflammatory cytokine response in jejunum. Subsequently, this study investigated the protective effects of the Malt1 inhibitor on the intestine of broilers under HS conditions. The 21-day-old male broilers were allocated to 8 pens housed in HS room (34°C for 7 h/d) until 28 d of age. During this period, 4 birds were selected from each heat-stressed pen and received intraperitoneal injection of 20 mg/kg body weight Mepazine (a Malt1 inhibitor) or the equivalent volume of phosphate buffer saline (PBS) every other day. When compared to PBS broilers, birds received Mepazine injection exhibited increased relative weight and higher villus height in jejunum (both P < 0.05). Mepazine treatment also increased (P < 0.05) the mRNA of zonula occludens-1 (ZO-1), claudin-1, and cadherin 1 of jejunum, which was companied by the reduced caspase-3 transcription under HS condition. Meanwhile, the gene expression levels of toll-like receptor 4 (TLR4), Malt1, NF-κB, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the jejunum were significantly downregulated by Mepazine administration (P < 0.05). Although there were no significant differences in the relative weight of the thymus and bursa, the transcription levels of T helper 1 (Th1)- and Th17-related cytokines were lower in thymus of birds injected with Mepazine. The cytokines of Treg cytokine transforming growth factor beta (TGF-ß) and forkhead box protein P3 (Foxp3) in both the thymus and bursa were not influenced. These results suggest that inhibition of Malt1 protease activity can protect intestinal integrity by promoting the production of tight junction proteins and attenuating NF-κB-mediated intestinal inflammation response under HS conditions.


Subject(s)
Chickens , Lymphoma, B-Cell, Marginal Zone , Male , Animals , Chickens/physiology , NF-kappa B/metabolism , Lymphoma, B-Cell, Marginal Zone/veterinary , Intestines , Cytokines/metabolism , Heat-Shock Response , Body Weight
3.
Front Vet Sci ; 10: 1220213, 2023.
Article in English | MEDLINE | ID: mdl-37635757

ABSTRACT

This study aimed to investigate the kinetics of dietary GSH in the gastrointestinal tract and the effect of GSH on the intestinal redox status of weaned piglets. Forty-eight piglets with an average age of 26 days and an average body weight of 7.7 kg were used in this study. The piglets were divided into three treatment groups including the control group with a basal diet (CON) and two GSH groups with a basal diet supplemented with 0.1% GSH (LGSH) and 1.0% GSH (HGSH), respectively. The basal diet did not contain any GSH. The experiment lasted for 14 days, with eight animals sampled from each group on d5 and 14. The parts of 0-5%, 5-75%, and 75-100% of the length of the small intestine were assigned to SI1, SI2, and SI3. The results showed that GSH almost completely disappeared from the digesta at SI2. However, no difference in the GSH level in mucosa, liver, and blood erythrocytes was found. The level of cysteine (CYS) in SI1 digesta was significantly higher in HGSH than CON and LGSH on d14, and similar findings were observed for cystine (CYSS) in SI3 digesta on d5. The CYSS level in HGSH was also significantly higher than LGSH in the stomach on d14, while no CYS or CYSS was detected in the stomach for control animals, indicating the breakdown of GSH to CYS already occurred in the stomach. Irrespective of the dietary treatment, the CYS level on d14 and the CYSS level on d5 and 14 were increased when moving more distally into the gastrointestinal tract. Furthermore, the mucosal CYS level was significantly increased at SI1 in the LGSH and HGSH group compared with CON on d5. Glutathione disulfide (GSSG) was recovered in the diets and digesta from the LGSH and HGSH group, which could demonstrate the auto-oxidation of GSH. It is, therefore, concluded that GSH supplementation could not increase the small intestinal mucosal GSH level of weaned piglets, and this could potentially relate to the kinetics of GSH in the digestive tract, where GSH seemed to be prone to the breakdown to CYS and CYSS and the auto-oxidation to GSSG.

4.
Front Vet Sci ; 10: 1111639, 2023.
Article in English | MEDLINE | ID: mdl-37187931

ABSTRACT

Introduction: Weaning is a stressful experience in the piglet's life, and it often coincides with impaired gut health. Post-weaning diarrhea in piglets is frequently caused by enterotoxigenic Escherichia coli (E. coli). The first step of an E. coli infection is the adhesion to host-specific receptors present on enterocytes, leading to pro-inflammatory immune responses. The aim of this study was to examine if specific fiber fractions in the piglet diet can prevent E. coli adhesion and subsequent immune responses. Methods: The trial included 200 piglets (Danbred × Piétrain): 10 piglets/pen × 10 pens/dietary treatment × 2 dietary treatments. From weaning until 14 days (d14) post-weaning, piglets were fed a control diet or test diet with 2 kg/ton of a mixture of specific fiber fractions derived from Araceae root and citrus. Afterwards, 1 piglet per pen was euthanized, a section was taken at 75% of small intestinal length and E. coli colonization on the mucosal epithelium was quantified by scraping and conventional plating. From the same small intestinal section, histo-morphological indices were assessed, and mucosal scrapings were analyzed for gene expression of pro- and anti-inflammatory cytokines, and NF-kB. Analyses of specific intestinal bacteria and SCFA were performed on samples of intestinal content (small intestine, caecum, colon). Fecal samples were taken to measure myeloperoxidase (MPO), calprotectin and PAP/RAG3A as biomarkers for intestinal inflammation. Results and discussion: Piglets fed the fiber mixture tended to have decreased E. coli colonization to the mucosal epithelium (5.65 vs. 4.84 log10 CFU/g; P = 0.07), less E. coli in the caecum (8.91 vs. 7.72 log10 CFU/g; P = 0.03) and more Lachnospiraceae in the colon (11.3 vs. 11.6 log10 CFU/g; P = 0.03). Additionally, the fiber mixture tended to increase cecal butyric acid (10.4 vs. 19.1 mmol/kg; P = 0.07). No significant effect on histo-morphological indices and on gene expression of pro- and anti-inflammatory cytokines and NF-kB was observed. The fecal MPO concentration tended to decrease (20.2 vs. 10.4 ng/g; P = 0.07), indicating less intestinal inflammation. In conclusion, this study showed that specific fiber fractions from Araceae root and citrus in piglet weaner diets may decrease the risk of pathogen overgrowth by reducing E. coli adhesion and intestinal inflammation.

5.
Animals (Basel) ; 13(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37238074

ABSTRACT

The weaning of pigs in most commercial pork production systems is an abrupt event performed at a fairly young age, i.e., mostly between 2.5 and 5 weeks of age. This practice induces a stress response, and its impact on behavior, performance and the gastrointestinal tract has been well described. Historically, there has been a focus on pre- and post-weaning nutritional strategies and post-weaning housing conditions and medication to improve production and reduce mortality after weaning. However, alternative pre-weaning housing and management systems that promote the development of natural social behaviors of piglets before weaning have recently received more attention. Co-mingling of non-littermates before weaning is a strategy that aims to initiate social interactions prior to weaning. The separation of the litter from the sow in the period leading up to weaning, termed intermittent suckling, aims to enhance the gradual separation from the sow. In addition, these practices encourage the young pig to learn explorative nutrient sourcing. Altogether, they may reduce weaning-associated stress. In this review, these strategies are defined, and their effects on behavior, performance, mortality, gastrointestinal function and immunocompetence are described. Though these strategies may be adapted to a commercial setting, it also becomes clear that many factors can contribute to the success of these strategies.

6.
Porcine Health Manag ; 9(1): 10, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37016456

ABSTRACT

BACKGROUND: Weaning is a critical phase in the pigs' life and gut health might be compromised. Gluconic acid was shown to be poorly absorbed but readily fermented to butyrate in the gut which in turn can improve gut function. Hence, a total of 144 weaning pigs were fed the experimental diets for 42 days. Three treatments were replicated in 8 pens with 6 piglets each: control; low dietary dose of gluconic acid, 9 g/kg; and high dietary dose of gluconic acid, 18 g/kg. After 21 days, one piglet from each pen was sampled for blood haematology and biochemistry, fore- and hindgut digesta characteristics and microbiota, and distal small intestinal histo-morphological indices and gene expression. RESULTS: Feeding gluconic acid enhanced performance in period d 0-14 post-weaning, in particular feed intake was increased (P = 0.028), though the high dose did not show benefits over the low dose. Regarding d 0-42, feed intake was elevated (P = 0.026). At d 21, piglets fed 18 g/kg gluconic acid showed a trend for lower number of total white blood cells (P = 0.060), caused by particularly lower numbers of lymphocytes as compared to control (P = 0.028). Highly reduced plasma urea was found for groups fed gluconic acid, it amounted to 2.6 and 2.6 mmol/L for the 9 and 18 g/kg level, respectively, as compared to 3.8 mmol/L in control (P = 0.003). Feeding gluconic acid promoted the relative abundance of lactic-acid-producing and acid-utilizing bacteria. In distal small intestine, Lactobacillus amylovorus increased substantially from 11.3 to 82.6% for control and gluconic acid 18 g/kg, respectively (P < 0.05). In mid-colon, the butyrate producers Faecalibacterium prausnitzii (P > 0.05) and Megasphaera elsdenii (P < 0.05) showed highest abundance in gluconic acid 18 g/kg. Consequently, in caecum and mid-colon, increased relative molar percentage of butyrate were found, e.g., 10.0, 12.9 et 14.7% in caecum for gluconic acid at 0, 9, and 18 g/kg, respectively (P = 0.046). Elevated mRNA anti-inflammatory cytokine and survival signalling levels in distal small intestinal mucosa were found by feeding gluconic acid which might be mediated by butyrate. CONCLUSIONS: Gluconic acid may have potential to alleviate the postweaning growth-check in pigs by altering microbiota composition and fermentation in the gut.

7.
Poult Sci ; 102(2): 102321, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36512873

ABSTRACT

Methyl sulfonyl methane (MSM) is available as a dietary supplement for human and has been associated with multiple health benefits such as reduction of oxidative stress. Heat stress (HS) is an environmental stressor challenging poultry production and known to inflict oxidative stress. We hypothesized that dietary MSM could attenuate HS-induced detrimental effects in broilers mediated by enhancement of antioxidant defenses. Hence, seven hundred ninety-two 1-day-old male Ross 308 broilers were allocated to 3 dietary treatments composed of corn-soybean meal diets with 0 (Ctrl), 1, or 2 g/kg MSM, with 12 replicates (22 birds each) per treatment for 39 d and subjected to a chronic cyclic HS model (temperature of 34°C and 52-58% relative humidity for 6 h daily) from d 24 to 39. MSM at 1 and 2 g/kg linearly increased daily gain and decreased feed-to-gain ratio compared with Ctrl in the grower phase (d 10-21, both P < 0.05). In the finisher phase (d 21-39) none of the performance and carcass indices were affected by treatment (P > 0.05). Nonetheless, data suggest reduced mortality by feeding MSM during HS. Also, during HS the diets with graded levels of MSM resulted in reduced rectal temperatures (P < 0.05) along with linearly decreased panting frequency on d 24 (P < 0.05). MSM supplemented birds showed a trend for linearly decreased thiobarbituric acid reactive substances of breast meat upon simulated retail display (P = 0.078). In addition, MSM administration linearly decreased lipid oxidation in plasma (d 25 and 39, P < 0.05) and breast muscle at d 23 (P < 0.05), concomitantly with linearly increased glutathione levels in erythrocytes (d 23 and 39, P < 0.05; d 25, P < 0.1) and breast muscle (d 23, P < 0.05; d 39, P < 0.1). In conclusion, MSM increased growth performance of broilers during grower phase, and exhibited positive effects on heat tolerance mediated by improved antioxidant capacity in broilers resulting in lower mortality in finisher phase.


Subject(s)
Antioxidants , Sexual and Gender Minorities , Humans , Male , Animals , Antioxidants/metabolism , Chickens/physiology , Homosexuality, Male , Dietary Supplements , Diet/veterinary , Oxidative Stress , Heat-Shock Response , Meat/analysis , Methane , Animal Feed/analysis
8.
Animals (Basel) ; 12(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36428337

ABSTRACT

Roles of plant-derived cinnamaldehyde, carvacrol, and thymol in the gut and bone health of laying hens was evaluated in the present study. After acclimation for 2 weeks, a total 384 of 52-week-old laying hens were allocated into three groups for 6 weeks: (1) basal diet group (Ctrl), (2) combination of cinnamaldehyde with carvacrol group (CAR+CIN), and (3) blend of cinnamaldehyde with thymol (THY+CIN). The dietary essential oil level was 100 mg/kg. Each treatment group had eight replicate pens (16 birds/pen). The stiffness and ultimate load of the tibiae from both the CAR+CIN and THY+CIN groups were higher than that of the Ctrl group (p < 0.05), along with comparable tibia ash, calcium, and phosphorus content among groups. At the same time, the manipulation of essential oils upregulated the transcription abundances of intestinal barrier proteins to varying degrees, whereas the experimental treatment failed to affect the composition in phyla of cecal microbiota. When compared to the Ctrl group, birds fed the CAR+CIN and THY+CIN diet displayed decreased bone resorption markers, reduced interleukin-1 concentrations, and increased transforming growth factor beta levels in serum. These findings suggest that cinnamaldehyde with carvacrol or thymol in feed of hens could enhance intestinal barrier and improve the mechanical properties of tibiae through structural modelling but not increase the mineral density, which might be involved in suppressing inflammation-mediated bone resorption.

9.
Front Physiol ; 13: 992689, 2022.
Article in English | MEDLINE | ID: mdl-36277189

ABSTRACT

The objective of this study was to evaluate the effect of the interaction of the zinc source (ZnSO4 vs. zinc amino acid complex) and vitamin E level (50 IU/kg vs. 100 IU/kg) on meat yield and quality in broilers subjected to chronic cyclic heat stress in the finisher phase. A total of 1224 one-day-old male Ross 308 broilers were randomly distributed among four dietary treatments. Each treatment contained nine replicates of 34 birds, housed in floor pens in a temperature- and lighting-controlled room. Treatments were organized in a 2 × 2 factorial arrangement: two sources of zinc, 60 mg/kg of Zn as ZnSO4 or 60 mg/kg of Zn as zinc amino acid complexes (ZnAA), combined with two levels of vitamin E (50 or 100 IU/kg). From day 28 until day 37 (finisher phase), all birds were subjected to chronic cyclic heat stress (32 ± 2°C for 6 h daily). In the present study, it was observed that replacing ZnSO4 with ZnAA increased breast meat weight and yield of broilers reared under chronic cyclic heat stress conditions, whereas total slaughter yield was not affected. Moreover, it was observed that replacing ZnSO4 with ZnAA resulted in breast meat with a lower drip and thawing loss and a higher marinade uptake. In conclusion, replacing ZnSO4 with more readily available ZnAA can improve breast meat yield and increase the water-holding capacity of breast meat of broilers exposed to chronic cyclic heat stress at the end of the production cycle. However, as no thermoneutral group was included in the present study, the observed effects of the zinc source cannot be generalized as a solution for heat stress. Moreover, the beneficial effects of ZnAA on breast meat yield and quality seem to be independent of the vitamin E level, and increasing vitamin E level has no additional beneficial effects.

10.
Anim Nutr ; 9: 49-59, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949985

ABSTRACT

To define the relationship between dietary nutrient density, calcium (Ca), and meat quality in meat ducks. A total of 288 male Cherry Valley SM3 medium ducklings were fed a common standard starter diet until d 14. At 15 d of age, ducks were randomly divided into 2 treatment groups and fed either a conventional diet or a low nutrient density (LND) diet. Compared with the conventional diet, the energy was reduced in the LND diet by 8.6% and 16.8% in grower (15 to 35 d) and finisher (36 to 56 d) phases, respectively, while other essential nutrients were kept proportionate to energy. The LND diet decreased the shear force (P < 0.05) and increased the lightness values of the pectoralis muscle when compared to the conventional diet, suggesting that LND diet exerted a beneficial role in meat quality. Subsequently, the effects of grated Ca in the LND diet on meat quality of pectoralis muscle were evaluated. A total of 576 male ducklings were fed a common starter diet until d 14, followed by feeding 4 LND diets with 0.5%, 0.7%, 0.9%, and 1.1% Ca. The results show that LND diets with 0.7% or more Ca decreased the shear force of pectoralis major muscle in 42-d-old meat ducks (P < 0.05). To explore the mechanism underlying Ca and tenderness, data from birds fed either 0.5% or 1.1% Ca in the LND diet indicated that birds fed 1.1% Ca exhibited lower shear force, upregulated calpains 1 expression, and higher calpains activity compared to those fed the LND diet with 0.5% Ca (P < 0.05). Moreover, the 1.1% Ca LND diet induced a higher myocyte apoptosis (P = 0.06) and upregulated mRNA expression of caspase-3 (P = 0.07) in breast muscle. Our data suggest that LND diets with 0.9% or 1.1% Ca had a positive role in the tenderness of breast meat, particularly the enhancing effect of 1.1% Ca LND diet on tenderness seems to be associated with proteolytic changes of myofibrillar proteins and myocyte apoptosis in meat ducks.

11.
J Anim Sci Biotechnol ; 13(1): 92, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35927754

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) infection in humans and animals usually comes with gut dysbiosis, which is potential culprit to skeletal health, it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development. Here, the effects of resistant starch from raw potato starch (RPS), a type of prebiotic, on E. coli-induced bone loss and gut microbial composition in meat ducks were evaluated. RESULTS: The results showed that dietary 12% RPS treatment improved bone quality, depressed bone resorption, and attenuated the pro-inflammatory reaction in both ileum and bone marrow. Meanwhile, the 12% RPS diet also increased the abundance of Firmicutes in E. coli-treated birds, along with higher production of short-chain fatty acids (SCFAs) especially propionate and butyrate. Whereas addition of ß-acid, an inhibitor of bacterial SCFAs production, to the drinking water of ducks fed 12% RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement. Further, treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) activity replicated the protective role of dietary 12% RPS in E. coli-induced bone loss including reduced the inhibition on nuclear factor κB (NF-κB) inflammasome activation, decreased bone resorption, and improved bone quality, which were correlated with comparable and higher regulatory T cells (Treg) frequency in MI-2 and 12% RPS group, respectively. CONCLUSIONS: These findings suggested that the diet with 12% RPS could alleviate E. coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production, and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion.

12.
Front Nutr ; 9: 860086, 2022.
Article in English | MEDLINE | ID: mdl-35369099

ABSTRACT

Gut microbiota interfered with using prebiotics may improve bone mass and alleviate the onset of bone problems. This study aimed to investigate the beneficial effect of resistant starch from raw potato starch (RPS) on bone health in meat ducks. Response to the dietary graded level of RPS supplementation, both tibia strength and ash were taken out linear and quadratic increase and positively correlated with increased propionate and butyrate levels in cecal content. Moreover, further outcomes of gut microbiota and micro-CT analysis showed the beneficial effect of RPS on bone mass might be associated with higher Firmicutes proportion and the production of short-chain fatty acids (SCFAs) in the cecum. Consistent with improving bone mass, SCFAs promoted phosphorus absorption, decreased the digestive tract pH, and enhanced intestinal integrity, which decreased the expression of pro-inflammatory genes in both gut and bone marrow, and consequently depressed osteoclastic bone resorption mediated by inflammatory cytokines. These findings highlight the importance of the "gut-bone" axis and provide new insight into the effect of prebiotics on bone health.

13.
Microorganisms ; 10(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35456812

ABSTRACT

Functional amino acids supplementation to farm animals is considered to not only be beneficial by regulating intestinal barrier, oxidative stress, and immunity, but potentially also by impacting the gut microbiota. The impact of amino acids on a piglet-derived colonic microbiota was evaluated using a 48-h in vitro batch incubation strategy. The combination of 16S rRNA gene profiling with flow cytometry demonstrated that specific microbial taxa were involved in the fermentation of each of the amino acids resulting in the production of specific metabolites. Branched chain amino acids (leucine, isoleucine, valine) strongly increased branched-chain fatty acids (+23.0 mM) and valerate levels (+3.0 mM), coincided with a marked increase of Peptostreptococcaceae. Further, glutamine and glutamate specifically stimulated acetate (~20 mM) and butyrate (~10 mM) production, relating to a stimulation of a range of families containing known butyrate-producing species (Ruminococcaceae, Oscillospiraceae, and Christensenellaceae). Finally, while tryptophan was only fermented to a minor extent, arginine and lysine specifically increased propionate levels (~2 mM), likely produced by Muribaculaceae members. Overall, amino acids were thus shown to be selectively utilized by microbes originating from the porcine colonic microbiota, resulting in the production of health-related short-chain fatty acids, thus confirming the prebiotic potential of specific functional amino acids.

14.
Anim Biosci ; 35(6): 902-915, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34991216

ABSTRACT

OBJECTIVE: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied. METHODS: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d. RESULTS: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker. CONCLUSION: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation.

15.
Front Nutr ; 9: 1066898, 2022.
Article in English | MEDLINE | ID: mdl-36601082

ABSTRACT

Prebiotics are dietary substrates which promote host health when utilized by desirable intestinal bacteria. The most commonly used prebiotics are non-digestible oligosaccharides but the prebiotic properties of other types of nutrients such as polyphenols are emerging. Here, we review recent evidence showing that amino acids (AA) could function as a novel class of prebiotics based on: (i) the modulation of gut microbiota composition, (ii) the use by selective intestinal bacteria and the transformation into bioactive metabolites and (iii) the positive impact on host health. The capacity of intestinal bacteria to metabolize individual AA is species or strain specific and this property is an opportunity to favor the growth of beneficial bacteria while constraining the development of pathogens. In addition, the chemical diversity of AA leads to the production of multiple bacterial metabolites with broad biological activities that could mediate their prebiotic properties. In this context, we introduce the concept of "Aminobiotics," which refers to the functional role of some AA as prebiotics. We also present studies that revealed synergistic effects of the co-administration of AA with probiotic bacteria, indicating that AA can be used to design novel symbiotics. Finally, we discuss the difficulty to bring free AA to the distal gut microbiota and we propose potential solutions such as the use of delivery systems including encapsulation to bypass absorption in the small intestine. Future studies will need to further identify individual AA, dose and mode of administration to optimize prebiotic effects for the benefit of human and animal health.

16.
Animals (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36611673

ABSTRACT

Introducing hyperprolific sows has led to proportionally more (very) low birth weight ((V)LBW) piglets, accompanied by higher mortality. To improve the survival of (V)LBW piglets, drenching a dense milk replacer (DMR) could be applied. A first experiment evaluated the effect of drenching DMR (1 or 3 doses within 24 h after birth) to LBW ((mean litter birth weight - 1*SD) and weighing between 1 kg and 750 g) and VLBW piglets ((mean litter birth weight - 1.5*SD) and weighing less than 750 g). On days 1, 2, 3, 9, and two days post-weaning, body weight, growth, skin lesions, and mortality were monitored. No effect of DMR was observed on any of the parameters. In a second experiment, LBW piglets were supplemented with DMR (similarly to experiment 1) at two farms differing in the level of perinatal care. The same parameters were evaluated, and again none were affected by drenching DMR. Overall survival of the LBW piglets was significantly higher at the farm with high perinatal care. It can be concluded that good perinatal management is more effective in enhancing the survival of LBW piglets than drenching.

17.
J Anim Sci Biotechnol ; 12(1): 104, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34620220

ABSTRACT

BACKGROUND: Alterations in ambient temperature have been associated with multiple detrimental effects on broilers such as intestinal barrier disruption and dysbiosis resulting in systemic inflammation. Inflammation and 25-hydroxycholecalciferol (25-OH-D3) have shown to play a negative and positive role, respectively, in the regulation of bone mass. Hence the potential of 25-OH-D3 in alleviating heat induced bone alterations and its mechanisms was studied. RESULTS: Heat stress (HS) directly induced a decrease in tibia material properties and bone mass, as demonstrated by lower mineral content, and HS caused a notable increase in intestinal permeability. Treatment with dietary 25-OH-D3 reversed the HS-induced bone loss and barrier leak. Broilers suffering from HS exhibited dysbiosis and increased expression of inflammatory cytokines in the ileum and bone marrow, as well as increased osteoclast number and activity. The changes were prevented by dietary 25-OH-D3 administration. Specifically, dietary 25-OH-D3 addition decreased abundance of B- and T-cells in blood, and the expression of inflammatory cytokines, especially TNF-α, in both the ileum and bone marrow, but did not alter the diversity and population or composition of major bacterial phyla. With regard to bone remodeling, dietary 25-OH-D3 supplementation was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen reflecting bone resorption and a concomitant decrement in osteoclast-specific marker genes expression (e.g. cathepsin K), whereas it did not apparently change serum bone formation markers during HS. CONCLUSIONS: These data underscore the damage of HS to intestinal integrity and bone health, as well as that dietary 25-OH-D3 supplementation was identified as a potential therapy for preventing these adverse effects.

18.
Animals (Basel) ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34438718

ABSTRACT

Cinnamaldehyde and capsaicin have been reported to exert effects on the gastric function, mediated by the interaction with transient receptor potential ankyrin channel 1 (TRPA1) and transient receptor potential vanilloid channel 1 (TRPV1), respectively. This study examined whether these compounds could trigger the release of cholecystokinin (CCK) and/or glucagon-like peptide 1 (GLP-1) in the pig's gut in a porcine ex-vivo intestinal segment model. Furthermore, it was verified whether this response was mediated by TRPA1 or TRPV1 by using the channel's antagonist. These gut peptides play a key role in the "intestinal brake", a feedback mechanism that influences the function of proximal parts of the gut. Structural analogues of cinnamaldehyde were screened as well, to explore structure-dependent activation. Results showed a significant effect of capsaicin on GLP-1 release in the proximal small intestine, TRPV1 independent. TRPA1 showed to be strongly activated by cinnamaldehyde, both in proximal and distal small intestine, evidenced by the release of CCK and GLP-1, respectively. Out of all structural derivates, cinnamaldehyde showed the highest affinity for TRPA1, which elucidates the importance of the α,ß-unsaturated aldehyde moiety. In conclusion, cinnamaldehyde as a TRPA1 agonist, is a promising candidate to modulate gastric function, by activating intestinal brake mechanisms.

19.
Animals (Basel) ; 11(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947151

ABSTRACT

This study aimed at determining how the degradation of cereal non-starch polysaccharides (NSP) by dietary enzymes during feed digestion can influence nutrient digestibility and NSP fermentability in broilers. Ninety-six one-day-old male broilers were assigned to 4 different treatments: control and enzyme-supplemented wheat-based (WC, WE) or maize-based (MC, ME) treatments. Enzyme supplementation with endo-xylanase and endo-glucanase occurred from day 20 onwards. On day 28, digesta samples were collected. Nutrient digestibility, NSP recovery, oligosaccharide profile, and short-chain fatty acids (SCFA) content were determined. Enzyme supplementation in WE resulted in a higher starch (3%; p = 0.004) and protein (5%; p = 0.002) digestion in the ileum compared to WC. Xylanase activity in WE led to in situ formations of arabinoxylan-oligosaccharides consisting of 5 to 26 pentose units in the ileum. This coincided with decreased arabinose (p = 0.059) and xylose (p = 0.036) amounts in the ceca and higher acetate (p = 0.014) and butyrate (p = 0.044) formation in WE compared to WC. Conversely, complete total tract recovery of arabinoxylan in MC and ME suggested poor maize NSP fermentability. Overall, enzyme action improved nutrient digestibility and arabinoxylan fermentability in the wheat-based diet. The lower response of the maize-based diet to enzyme treatment may be related to the recalcitrance of maize arabinoxylan as well as to the high nutritive value of maize.

20.
Bioresour Technol ; 333: 125239, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33940503

ABSTRACT

This study assessed the selenium (Se) removal efficiency of two pilot-scale high-rate algae ponds (HRAPs) treating domestic wastewater and investigated the production of Se-enriched microalgae as potential feed supplement. The HRAP-Se had an average Se, NH4+-N, total phosphorus and COD removal efficiency of, respectively, 43%, 93%, 77%, and 70%. Inorganic Se taken up by the microalgae was mainly (91%) transformed to selenoamino acids, and 49-63% of Se in the Se-enriched microalgae was bioaccessible for animals. The crude protein content (48%) of the microalgae was higher than that of soybeans, whereas the essential amino acid content was comparable. Selenium may induce the production of the polyunsaturated fatty acids omega-3 and omega-6 in microalgae. Overall, the production of Se-enriched microalgae in HRAPs may offer a promising alternative for upgrading low-value resources into high-value feed supplements, supporting the drive to a circular economy.


Subject(s)
Microalgae , Selenium , Biomass , Ponds , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...