Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(36): 8470-8476, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36054027

ABSTRACT

Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution.

2.
J Phys Chem Lett ; 13(20): 4470-4478, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35561339

ABSTRACT

The autoionization dynamics of superexcited superfluid He nanodroplets doped with Na atoms is studied by extreme-ultraviolet (XUV) time-resolved electron spectroscopy. Following excitation into the higher-lying droplet absorption band, the droplet relaxes into the lowest metastable atomic 1s2s 1,3S states from which interatomic Coulombic decay (ICD) takes place either between two excited He atoms or between an excited He atom and a Na atom attached to the droplet surface. Four main ICD channels are identified, and their decay times are determined by varying the delay between the XUV pulse and a UV pulse that ionizes the initial excited state and thereby quenches ICD. The decay times for the different channels all fall in the range of ∼1 ps, indicating that the ICD dynamics are mainly determined by the droplet environment. A periodic modulation of the transient ICD signals is tentatively attributed to the oscillation of the bubble forming around the localized He excitation.

3.
J Chem Phys ; 156(3): 034305, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35065554

ABSTRACT

Laser-induced fluorescence spectra and excitation lifetimes of anthracene, tetracene, and pentacene molecules attached to the surface of solid argon clusters have been measured with respect to cluster size, density of molecules, and excitation density. Results are compared to previous studies on the same sample molecules attached to neon clusters. A contrasting lifetime behavior of anthracene on neon and argon clusters is discussed, and mechanisms are suggested to interpret the results. Although both neon and argon clusters are considered to be weakly interacting environments, we find that the excitation decay dynamics of the studied acenes depends significantly on the cluster material. Moreover, we find even qualitative differences regarding the dependence on the dopant density. Based on these observations, previous assignments of collective radiative and non-radiative decay mechanisms are discussed in the context of the new experimental findings.

4.
Phys Chem Chem Phys ; 23(28): 15138-15149, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34259254

ABSTRACT

The relaxation dynamics of superexcited superfluid He nanodroplets is thoroughly investigated by means of extreme-ultraviolet (XUV) femtosecond electron and ion spectroscopy complemented by time-dependent density functional theory (TDDFT). Three main paths leading to the emission of electrons and ions are identified: droplet autoionization, pump-probe photoionization, and autoionization induced by re-excitation of droplets relaxing into levels below the droplet ionization threshold. The most abundant product ions are He2+, generated by droplet autoionization and by photoionization of droplet-bound excited He atoms. He+ appear with some pump-probe delay as a result of the ejection He atoms in their lowest excited states from the droplets. The state-resolved time-dependent photoelectron spectra reveal that intermediate excited states of the droplets are populated in the course of the relaxation, terminating in the lowest-lying metastable singlet and triplet He atomic states. The slightly faster relaxation of the triplet state compared to the singlet state is in agreement with the simulation showing faster formation of a bubble around a He atom in the triplet state.

5.
Opt Express ; 28(20): 29976-29990, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114885

ABSTRACT

Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulses may introduce nonlinear mixing signals that compromise the experiment at short time delays. Here, we investigate these effects in detail by extending the analysis described in a recent publication (Wituschek et al., Nat. Commun., 11, 883, 2020). High-order fringe-resolved autocorrelation and wave packet interferometry experiments at photon energies > 23 eV are performed, accompanied by numerical simulations. It turns out that both the autocorrelation and the wave-packet interferometry data are very sensitive to saturation effects and can thus be used to characterize saturation in the HGHG process. Our results further imply that time-resolved spectroscopy experiments are feasible even for time delays smaller than the seed pulse duration.

6.
Phys Chem Chem Phys ; 22(15): 7828-7834, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32248221

ABSTRACT

High intensity XUV radiation from a free-electron laser (FEL) was used to create a nanoplasma inside ammonia clusters with the intent of studying the resulting electron-ion interactions and their interplay with plasma evolution. In a plasma-like state, electrons with kinetic energy lower than the local collective Coulomb potential of the positive ionic core are trapped in the cluster and take part in secondary processes (e.g. electron-impact excitation/ionization and electron-ion recombination) which lead to subsequent excited and neutral molecular fragmentation. Using a time-delayed UV laser, the dynamics of the excited atomic and molecular states are probed from -0.1 ps to 18 ps. We identify three different phases of molecular fragmentation that are clearly distinguished by the effect of the probe laser on the ionic and electronic yield. We propose a simple model to rationalize our data and further identify two separate channels leading to the formation of excited hydrogen.

7.
Nat Commun ; 11(1): 883, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060288

ABSTRACT

The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.

8.
Sci Adv ; 6(3): eaaz0385, 2020 01.
Article in English | MEDLINE | ID: mdl-32010776

ABSTRACT

The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for H2O and D2O clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...