Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 105(3): 030402, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20867747

ABSTRACT

We report quantum degeneracy in a gas of ultracold fermionic (87)Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5 s, we obtain samples well into the degenerate regime with T/T(F)=0.26(-0.06)(+0.05). The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/T(F) ∼0.5.

2.
Phys Rev Lett ; 103(20): 200402, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-20365965

ABSTRACT

We report Bose-Einstein condensation of (84)Sr in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N(0) approximately 3 x 10(5)) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images.

3.
Phys Rev Lett ; 95(22): 223002, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16384214

ABSTRACT

We report the use of photoassociative spectroscopy to determine the ground-state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494 +/- 5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.

4.
Phys Rev Lett ; 94(8): 083004, 2005 Mar 04.
Article in English | MEDLINE | ID: mdl-15783889

ABSTRACT

We report photoassociative spectroscopy of 88Sr(2) in a magneto-optical trap operating on the 1S0-->3P1 intercombination line at 689 nm. Photoassociative transitions are driven with a laser red detuned by 600-2400 MHz from the 1S0-->1P1 atomic resonance at 461 nm. Photoassociation takes place at extremely large internuclear separation, and the photoassociative spectrum is strongly affected by relativistic retardation. A fit of the transition frequencies determines the 1P1 atomic lifetime (tau=5.22+/-0.03 ns) and resolves a discrepancy between experiment and recent theoretical calculations.

5.
Phys Rev Lett ; 92(14): 143001, 2004 Apr 09.
Article in English | MEDLINE | ID: mdl-15089533

ABSTRACT

We report optical absorption imaging of ultracold neutral strontium plasmas. The ion absorption spectrum determined from the images is Doppler broadened and thus provides a quantitative measure of the ion kinetic energy. For the particular plasma conditions studied, ions heat rapidly as they equilibrate during the first 250 ns after plasma formation. Equilibration leaves ions on the border between the weakly coupled gaseous and strongly coupled liquid states. On a longer time scale of microseconds, pressure exerted by the trapped electron gas accelerates the ions radially.

6.
Phys Rev Lett ; 93(26 Pt 1): 265003, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15697986

ABSTRACT

We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...