Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 55(83): 12487-12490, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31566647

ABSTRACT

CF2H-Pseudoprolines obtained from difluoroacetaldehyde hemiacetal and serine are stable proline surrogates. The consequence of the incorporation of the CF2H group is an important decrease of the trans to cis amide bond isomerization energy and a remarkable stabilisation of the cis conformer by an hydrogen bond.


Subject(s)
Peptides/chemistry , Proline/analogs & derivatives , Thiazoles/chemistry , Toluene/analogs & derivatives , Hydrogen Bonding , Methylation , Molecular Conformation , Proline/chemistry , Stereoisomerism , Toluene/chemistry
2.
Chirality ; 25(10): 628-42, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23925889

ABSTRACT

Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation.


Subject(s)
Estrogen Receptor alpha/chemistry , Nuclear Proteins , Nuclear Receptor Coactivators/chemistry , Peptides/chemistry , Proline/chemistry , Receptors, Cytoplasmic and Nuclear , Trans-Activators , Transcription Factors , src Homology Domains/physiology , Amino Acid Motifs/physiology , Amino Acid Sequence , Circular Dichroism , Estrogen Receptor alpha/physiology , GRB2 Adaptor Protein/chemistry , GRB2 Adaptor Protein/physiology , Humans , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Protein Binding , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/physiology , Sequence Alignment , Trans-Activators/genetics , Trans-Activators/physiology , Transcription Factors/genetics , Transcription Factors/physiology
3.
J Biol Chem ; 276(37): 34840-6, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11457850

ABSTRACT

The pentose-phosphate pathway provides reductive power and nucleotide precursors to the cell through oxidative and nonoxidative branches, respectively. 6-Phosphogluconolactonase is the second enzyme of the oxidative branch and catalyzes the hydrolysis of 6-phosphogluconolactones, the products of glucose 6-phosphate oxidation by glucose-6-phosphate dehydrogenase. The role of 6-phosphogluconolactonase was still questionable, because 6-phosphogluconolactones were believed to undergo rapid spontaneous hydrolysis. In this work, nuclear magnetic resonance spectroscopy was used to characterize the chemical scheme and kinetic features of the oxidative branch. We show that 6-phosphogluconolactones have in fact a nonnegligible lifetime and are highly electrophilic compounds. The delta form (1-5) of the lactone is the only product of glucose 6-phosphate oxidation. Subsequently, it leads to the gamma form (1-4) by intramolecular rearrangement. However, only the delta form undergoes spontaneous hydrolysis, the gamma form being a "dead end" of this branch. The delta form is the only substrate for 6-phosphogluconolactonase. Therefore, 6-phosphogluconolactonase activity accelerates hydrolysis of the delta form, thus preventing its conversion into the gamma form. Furthermore, 6-phosphogluconolactonase guards against the accumulation of delta-6-phosphogluconolactone, which may be toxic through its reaction with endogenous cellular nucleophiles. Finally, the difference between activity of human, Trypanosoma brucei, and Plasmodium falciparum 6-phosphogluconolactonases is reported and discussed.


Subject(s)
Carboxylic Ester Hydrolases/physiology , Pentose Phosphate Pathway , Glucose-6-Phosphate/metabolism , Humans , Kinetics , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Substrate Specificity
4.
Eur J Biochem ; 267(17): 5306-12, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10951189

ABSTRACT

Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This protein belongs to the large ATP-binding cassette (ABC) family of transporters. Most patients with cystic fibrosis bear a mutation in the nucleotide-binding domain 1 (NBD1) of CFTR, which plays a key role in the activation of the channel function of CFTR. Determination of the three dimensional structure of NBD1 is essential to better understand its structure-function relationship, and relate it to the biological features of CFTR. In this paper, we report the first preparation of recombinant His-tagged NBD1, as a soluble, stable and isolated domain. The method avoids the use of renaturing processes or fusion constructs. ATPase activity assays show that the recombinant domain is functional. Using tryptophan intrinsic fluorescence, we point out that the local conformation, in the region of the most frequent mutation DeltaF508, could differ from that of the nucleotide-binding subunit of histidine permease, the only available ABC structure. We have undertaken three dimensional structure determination of NBD1, and the first two dimensional 15N-1H NMR spectra demonstrate that the domain is folded. The method should be applicable to the structural studies of NBD2 or of other NBDs from different ABC proteins of major biological interest, such as multidrug resistance protein 1 or multidrug resistance associated protein 1.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Nucleotides/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA Primers , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...