Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(8): 4691-4701, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38567725

ABSTRACT

Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.


Subject(s)
Aptamers, Nucleotide , Framycetin , Nucleic Acid Conformation , Riboswitch , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/genetics , Framycetin/chemistry , Framycetin/metabolism , Binding Sites , Magnetic Resonance Spectroscopy/methods , Neomycin/chemistry , Mass Spectrometry/methods , Nucleotide Motifs , Nuclear Magnetic Resonance, Biomolecular
2.
Angew Chem Int Ed Engl ; 63(22): e202403063, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38529723

ABSTRACT

Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.


Subject(s)
RNA , RNA/chemistry , RNA/chemical synthesis , Solid-Phase Synthesis Techniques/methods
3.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38050960

ABSTRACT

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Subject(s)
Escherichia coli , Mycoplasma mycoides , RNA, Bacterial , RNA, Transfer, Gly , Anticodon/genetics , Base Sequence , Codon/genetics , Escherichia coli/genetics , Glycine/genetics , RNA, Transfer/genetics , RNA, Transfer, Gly/genetics , Mycoplasma mycoides/genetics , Mycoplasma mycoides/metabolism , RNA, Bacterial/genetics
4.
Acc Chem Res ; 56(19): 2713-2725, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37728742

ABSTRACT

Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.


Subject(s)
RNA, Transfer , RNA , Cryoelectron Microscopy , Amino Acids , Protein Biosynthesis , Peptides/chemistry , Anti-Bacterial Agents/pharmacology , RNA, Messenger , Biology
5.
Chemistry ; 29(60): e202302220, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37534701

ABSTRACT

Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.


Subject(s)
Oligonucleotides , RNA , RNA/chemistry , RNA, Small Interfering/chemistry , Oligonucleotides/chemistry , Molecular Conformation , Magnetic Resonance Spectroscopy , Oligoribonucleotides , Nucleic Acid Conformation
6.
J Am Chem Soc ; 145(28): 15284-15294, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37420313

ABSTRACT

Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.


Subject(s)
Neomycin , Riboswitch , Framycetin , Anti-Bacterial Agents/metabolism , Aminoglycosides , RNA , Mass Spectrometry , Binding Sites , Nucleic Acid Conformation , Ligands
7.
ACS Chem Biol ; 18(10): 2233-2239, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37433044

ABSTRACT

Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are frequently needed for structural and functional studies of protein synthesis in the ribosome. Such conjugates are accessible by chemical solid-phase synthesis, allowing for the utmost flexibility of both the peptide and the RNA sequence. Commonly used protection group strategies, however, have severe limitations with respect to generating the characteristic Nα-formylmethionyl terminus because the formyl group of the conjugate synthesized at the solid support is easily cleaved during the final basic deprotection/release step. In this study, we demonstrate a simple solution to the problem by coupling appropriately activated Nα-formyl methionine to the fully deprotected conjugate. The structural integrity of the obtained Nα-formylmethionyl conjugate─and hence the chemoselectivity of the reaction─were verified by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry sequence analysis. Additionally, we confirmed the applicability of our procedure for structural studies by obtaining two structures of the ribosome in complex with either fMAI-nh-ACCA or fMFI-nh-ACCA in the P site and ACC-PMN in the A site of the bacterial ribosome at 2.65 and 2.60 Å resolution, respectively. In summary, our approach for hydrolysis-resistant Nα-formylated RNA-peptide conjugates is synthetically straightforward and opens up new avenues to explore ribosomal translation with high-precision substrate mimics.


Subject(s)
RNA, Transfer, Amino Acyl , RNA , RNA, Transfer, Amino Acyl/metabolism , RNA/metabolism , Peptides/chemistry , Ribosomes/metabolism
8.
Nucleic Acids Res ; 51(1): 54-67, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36610789

ABSTRACT

Riboswitches are conserved non-coding domains in bacterial mRNA with gene regulation function that are essential for maintaining enzyme co-factor metabolism. Recently, the pnuC RNA motif was reported to selectively bind nicotinamide adenine dinucleotide (NAD+), defining a novel class of NAD+ riboswitches (NAD+-II) according to phylogenetic analysis. To reveal the three-dimensional architecture and the ligand-binding mode of this riboswitch, we solved the crystal structure of NAD+-II riboswitch in complex with NAD+. Strikingly and in contrast to class-I riboswitches that form a tight recognition pocket for the adenosine diphosphate (ADP) moiety of NAD+, the class-II riboswitches form a binding pocket for the nicotinamide mononucleotide (NMN) portion of NAD+ and display only unspecific interactions with the adenosine. We support this finding by an additional structure of the class-II RNA in complex with NMN alone. The structures define a novel RNA tertiary fold that was further confirmed by mutational analysis in combination with isothermal titration calorimetry (ITC), and 2-aminopurine-based fluorescence spectroscopic folding studies. Furthermore, we truncated the pnuC RNA motif to a short RNA helical scaffold with binding affinity comparable to the wild-type motif to allude to the potential of engineering the NAD+-II motif for biotechnological applications.


Subject(s)
Riboswitch , NAD/metabolism , Phylogeny , Ligands , RNA/genetics
9.
Beilstein J Org Chem ; 18: 1617-1624, 2022.
Article in English | MEDLINE | ID: mdl-36530531

ABSTRACT

Imidazopyridines and pyrrolopyrimidines are an important class of compounds in medicinal chemistry. They can also be considered as deaza-modified purine nucleobases, and as such have attracted a lot of interest recently in the context of RNA atomic mutagenesis. In particular, for 1-deazaguanine (c1G base), a significant increase in demand is apparent. Synthetic access is challenging and the few reports found in the literature suffer from the requirement of hazardous intermediates and harsh reaction conditions. Here, we report a new six-step synthesis for c1G base, starting from 6-iodo-1-deazapurine. The key transformations are copper catalyzed C-O-bond formation followed by site-specific nitration. A further strength of our route is divergency, additionally enabling the synthesis of 1-deazahypoxanthine (c1I base).

10.
J Med Chem ; 65(22): 15165-15173, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36374020

ABSTRACT

Thiopurines are in widespread clinical use for the treatment of immunological disorders and certain cancers. However, treatment failure due to resistance or adverse drug reactions are common, asking for new therapeutic strategies. We investigated the potential of 6-thioguanosine monophosphate (6sGMP) prodrugs to overcome resistance to 6-thioguanine. We successfully developed synthetic routes toward diverse 6sGMP prodrugs, tested their proliferation inhibitory potential in different cell lines, and examined their mode of action. Our results show that 4-acetyloxybenzyl- and cycloSaligenyl-derivatized 6sGMP prodrugs are effective antiproliferative compounds in cells that are resistant to thiopurines. We find that resistance is related to the expression of salvage pathway enzyme HGPRT. Using TUC-seq DUAL, we demonstrate the intracellular conversion of 6sGMP prodrugs into bioactive 6sGTPs. Thus, our study offers a promising strategy for thiopurine therapy by using 6sGMP prodrugs, and it suggests TUC-seq DUAL as a simple and fast method to measure the success of thiopurine therapy.


Subject(s)
Breast Neoplasms , Leukemia , Prodrugs , Humans , Female , Prodrugs/pharmacology , Prodrugs/therapeutic use , Breast Neoplasms/drug therapy , Thioguanine/pharmacology , Thioguanine/metabolism , Purine Nucleosides
11.
Nucleic Acids Res ; 50(18): 10785-10800, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36169220

ABSTRACT

Substitution of the queuine nucleobase precursor preQ1 by an azide-containing derivative (azido-propyl-preQ1) led to incorporation of this clickable chemical entity into tRNA via transglycosylation in vitro as well as in vivo in Escherichia coli, Schizosaccharomyces pombe and human cells. The resulting semi-synthetic RNA modification, here termed Q-L1, was present in tRNAs on actively translating ribosomes, indicating functional integration into aminoacylation and recruitment to the ribosome. The azide moiety of Q-L1 facilitates analytics via click conjugation of a fluorescent dye, or of biotin for affinity purification. Combining the latter with RNAseq showed that TGT maintained its native tRNA substrate specificity in S. pombe cells. The semi-synthetic tRNA modification Q-L1 was also functional in tRNA maturation, in effectively replacing the natural queuosine in its stimulation of further modification of tRNAAsp with 5-methylcytosine at position 38 by the tRNA methyltransferase Dnmt2 in S. pombe. This is the first demonstrated in vivo integration of a synthetic moiety into an RNA modification circuit, where one RNA modification stimulates another. In summary, the scarcity of queuosinylation sites in cellular RNA, makes our synthetic q/Q system a 'minimally invasive' system for placement of a non-natural, clickable nucleobase within the total cellular RNA.


Subject(s)
Nucleoside Q , Schizosaccharomyces , 5-Methylcytosine/metabolism , Azides , Biotin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Dyes/metabolism , Humans , Nucleoside Q/chemistry , RNA, Transfer/metabolism , RNA, Transfer, Asp/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , tRNA Methyltransferases/metabolism
12.
Org Biomol Chem ; 20(39): 7845-7850, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36172831

ABSTRACT

Azides are versatile bioorthogonal reporter moieties that are commonly used for site-specific labeling and functionalization of RNA to probe its biology. The preparation of azido modified nucleic acids by solid-phase synthesis is problematic due to the inherent reactivity of P(III) species with azides according to the Staudinger reaction. Various strategies have been developed to bypass this limitation and are often time-consuming, low-yielding and labor-intensive. In particular, the synthesis of RNA with internal 2'-azido modifications is restricted to a single approach that employs P(V) chemistry instead of the widely used P(III) phosphoramidite chemistry. To fill this methodological gap, we present a novel convenient path toward 2'-azido RNA from readily accessible 2'-amino RNA through treatment with the diazotizing reagent fluorosulfuryl azide (FSO2N3). A diazotransfer reaction was established for oligoribonucleotides of different lengths and secondary structures. The robustness of the approach was further demonstrated for RNAs containing multiple 2'-azido moieties and for RNAs containing other sensitive modifications such as thiouridine or methylated nucleobases with a positive charge. The synthetic ease of generating 2'-azido RNA will pave the way for biotechnological applications, in particular for siRNA technologies and for referencing the growing number of RNA metabolic labeling approaches that rely on 2'-azido nucleosides.


Subject(s)
Azides , Oligoribonucleotides , Azides/chemistry , RNA, Small Interfering , Thiouridine
13.
Angew Chem Int Ed Engl ; 61(41): e202207590, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35982640

ABSTRACT

Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, ß, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.


Subject(s)
RNA, Catalytic , Carbon , Catalysis , Guanine , Guanosine , Nucleic Acid Conformation , Phosphates , RNA, Catalytic/metabolism
14.
J Am Chem Soc ; 144(23): 10344-10352, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35666572

ABSTRACT

Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.


Subject(s)
RNA, Catalytic , RNA , Base Pairing , Guanine , Mutagenesis , Nucleic Acid Conformation , RNA/chemistry , RNA, Catalytic/chemistry
15.
Nucleic Acids Res ; 50(11): 6038-6051, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35687141

ABSTRACT

Nucleobase deamination, such as A-to-I editing, represents an important posttranscriptional modification of RNA. When deamination affects guanosines, a xanthosine (X) containing RNA is generated. However, the biological significance and chemical consequences on RNA are poorly understood. We present a comprehensive study on the preparation and biophysical properties of X-modified RNA. Thermodynamic analyses revealed that base pairing strength is reduced to a level similar to that observed for a G•U replacement. Applying NMR spectroscopy and X-ray crystallography, we demonstrate that X can form distinct wobble geometries with uridine depending on the sequence context. In contrast, X pairing with cytidine occurs either through wobble geometry involving protonated C or in Watson-Crick-like arrangement. This indicates that the different pairing modes are of comparable stability separated by low energetic barriers for switching. Furthermore, we demonstrate that the flexible pairing properties directly affect the recognition of X-modified RNA by reverse transcription enzymes. Primer extension assays and PCR-based sequencing analysis reveal that X is preferentially read as G or A and that the ratio depends on the type of reverse transcriptase. Taken together, our results elucidate important properties of X-modified RNA paving the way for future studies on its biological significance.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , Xanthines , Base Pairing , Deamination , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , Ribonucleosides , Xanthines/chemistry
16.
RSC Chem Biol ; 3(4): 447-455, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35441143

ABSTRACT

Metabolic labeling has emerged as a powerful tool to endow RNA with reactive handles allowing for subsequent chemical derivatization and processing. Recently, thiolated nucleosides, such as 4-thiouridine (4sU), have attracted great interest in metabolic labeling-based RNA sequencing approaches (TUC-seq, SLAM-seq, TimeLapse-seq) to study cellular RNA expression and decay dynamics. For these and other applications (e.g. PAR-CLIP), thus far only the naked nucleoside 4sU has been applied. Here we examined the concept of derivatizing 4sU into a 5'-monophosphate prodrug that would allow for cell permeation and potentially improve labeling efficiency by bypassing the rate-limiting first step of 5' phosphorylation of the nucleoside into the ultimately bioactive 4sU triphosphate (4sUTP). To this end, we developed robust synthetic routes towards diverse 4sU monophosphate prodrugs. Using metabolic labeling assays, we found that most of the newly introduced 4sU prodrugs were well tolerated by the cells. One derivative, the bis(4-acetyloxybenzyl) 5'-monophosphate of 4sU, was also efficiently incorporated into nascent RNA.

17.
Monatsh Chem ; 153(3): 285-291, 2022.
Article in English | MEDLINE | ID: mdl-35400759

ABSTRACT

The growing interest in 3-methylcytidine (m3C) originates from the recent discoveries of m3C modified tRNAs in humans as well as its intensively debated occurrence in mRNA. Moreover, m3C formation can be catalyzed by RNA without the assistance of proteins as has been demonstrated for a naturally occurring riboswitch fold using the methylated form of its cognate ligand as cofactor. Additionally, new RNA sequencing methods have been developed to detect this modification in transcriptome-wide manner. For all these reasons, an increasing demand for synthetic m3C containing oligoribonucleotides is emerging. Their chemical synthesis relies on RNA solid-phase synthesis using phosphoramidite building blocks. Here, we describe a facile synthetic path towards N4-acetylated 2'-O-TBDMS- and 2'-O-TOM m3C phosphoramidites to provide an optimal toolbox for solid-phase synthesis of m3C containing RNA. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-022-02896-x.

18.
Nat Protoc ; 17(6): 1486-1517, 2022 06.
Article in English | MEDLINE | ID: mdl-35478248

ABSTRACT

Chromosome conformation capture (Hi-C) techniques map the 3D organization of entire genomes. How sister chromatids fold in replicated chromosomes, however, cannot be determined with conventional Hi-C because of the identical DNA sequences of sister chromatids. Here, we present a protocol for sister chromatid-sensitive Hi-C (scsHi-C) that enables the distinction of DNA contacts within individual sister chromatids (cis sister contacts) from those between sister chromatids (trans sister contacts), thereby allowing investigation of the organization of replicated genomes. scsHi-C is based on live-cell labeling of nascent DNA by the synthetic nucleoside 4-thio-thymidine (4sT), which incorporates into a distinct DNA strand on each sister chromatid because of semi-conservative DNA replication. After purification of genomic DNA and in situ Hi-C library preparation, 4sT is chemically converted into 5-methyl-cytosine in the presence of OsO4/NH4Cl to introduce T-to-C signature point mutations on 4sT-labeled DNA. The Hi-C library is then sequenced, and ligated fragments are assigned to sister chromatids on the basis of strand orientation and the presence of signature mutations. The ensemble of scsHi-C contacts thereby represents genome-wide contact probabilities within and across sister chromatids. scsHi-C can be completed in 2 weeks, has been successfully applied in HeLa cells and can potentially be established for any cell type that allows proper cell cycle synchronization and incorporation of sufficient amounts of 4sT. The genome-wide maps of replicated chromosomes detected by scsHi-C enable investigation of the molecular mechanisms shaping sister chromatid topologies and the relevance of sister chromatid conformation in crucial processes like DNA repair, mitotic chromosome formation and potentially other biological processes.


Subject(s)
Chromatids , DNA Replication , Chromatids/genetics , DNA Repair , HeLa Cells , Humans
19.
Nat Struct Mol Biol ; 29(2): 152-161, 2022 02.
Article in English | MEDLINE | ID: mdl-35165455

ABSTRACT

Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.


Subject(s)
Chloramphenicol/chemistry , Chloramphenicol/pharmacology , Peptidyl Transferases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Kinetics , Models, Molecular , Protein Conformation , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Static Electricity , Thermus thermophilus/drug effects , Thermus thermophilus/metabolism
20.
Angew Chem Weinheim Bergstr Ger ; 134(41): e202207590, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-38505292

ABSTRACT

Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, ß, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.

SELECTION OF CITATIONS
SEARCH DETAIL
...