Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Gen Virol ; 94(Pt 12): 2636-2646, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23963534

ABSTRACT

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER-Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.


Subject(s)
Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Foot-and-Mouth Disease Virus/pathogenicity , Host-Pathogen Interactions , Monomeric GTP-Binding Proteins/metabolism , Animals , Cell Line , Endoplasmic Reticulum/metabolism , Foot-and-Mouth Disease Virus/physiology , HeLa Cells , Humans , Protein Transport , Secretory Pathway , Swine , Virus Replication
2.
Virus Genes ; 36(2): 401-13, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18278548

ABSTRACT

Foot-and-mouth disease virus (FMDV) isolates collected from various geographic locations in Afghanistan between 2003 and 2005 were genetically characterized, and their phylogeny was reconstructed utilizing nucleotide sequences of the complete VP1 coding region. Three serotypes of FMDV (types A, O, and Asia 1) were identified as causing clinical disease in Afghanistan during this period. Phylogenetic analysis revealed that the type A viruses were most closely related to isolates collected in Iran during 2002-2004. This is the first published report of serotype A in Afghanistan since 1975, therefore indicating the need for inclusion of serotype A in vaccine formulations that will be used to control disease outbreaks in this country. Serotype O virus isolates were closely related to PanAsia strains, including those that originated from Bhutan and Nepal during 2003-2004. The Asia 1 viruses, collected along the northern and eastern borders of Afghanistan, were most closely related to FMDV isolates collected in Pakistan during 2003 and 2004. Data obtained from this study provide valuable information on the FMDV serotypes circulating in Afghanistan and their genetic relationship with strains causing FMD in neighboring countries.


Subject(s)
Capsid Proteins/genetics , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Genes, Viral , Phylogeny , Afghanistan/epidemiology , Amino Acid Sequence , Animals , Base Sequence , Capsid Proteins/chemistry , Cattle , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/isolation & purification , Molecular Epidemiology , Molecular Sequence Data , RNA, Viral/analysis , RNA, Viral/genetics , Sequence Alignment , Serotyping
3.
Emerg Infect Dis ; 11(12): 1887-93, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16485475

ABSTRACT

A particular genetic lineage of foot-and-mouth disease virus (FMDV) serotype O, which we have named the PanAsia strain, was responsible for an explosive pandemic in Asia and extended to parts of Africa and Europe from 1998 to 2001. In 2000 and 2001, this virus strain caused outbreaks in the Republic of Korea, Japan, Russia, Mongolia, South Africa, the United Kingdom, Republic of Ireland, France, and the Netherlands, countries which last experienced FMD outbreaks decades before (ranging from 1934 for Korea to 1984 for the Netherlands). Although the virus has been controlled in all of these normally FMD-free or sporadically infected countries, it appears to be established throughout much of southern Asia, with geographically separated lineages evolving independently. A pandemic such as this is a rare phenomenon but demonstrates the ability of newly emerging FMDV strains to spread rapidly throughout a wide region and invade countries previously free from the disease.


Subject(s)
Disease Outbreaks/veterinary , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Animals , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease Virus/physiology , Global Health , Phylogeny , Serotyping , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...