Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; 37(19): 3199-3206, 2023.
Article in English | MEDLINE | ID: mdl-35392742

ABSTRACT

A new 3,8''-flavanone-flavonol dimer gnidiflavanone-flavonol (1) and 10 known compounds (2-11), including four rare primula-type flavones 2-5, were isolated from the roots of Gnidia apiculata. Compounds 2-5 and 7 were reported for the first time from the plant family Thymelaeceae. Structures of the isolated compounds were established by spectroscopic data, including 1D and 2D NMR (COSY, HMBC, HSQC and ROESY) and mass spectrometry, as well as by the comparison with literature data. The crude roots extract and isolated compounds were evaluated for antimicrobial and antiplasmodial activities. Among isolated compounds, 6-hydroxyflavone (4) and 6-O-acetylflavone (4a) showed antiplasmodial activity against chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum.

2.
Nat Prod Res ; 37(23): 4008-4012, 2023.
Article in English | MEDLINE | ID: mdl-36576067

ABSTRACT

The root extract of Suregada zanzibariensis Baill. afforded six previously described ent-abietane diterpenoids, namely 7-oxo-ent-abieta-5(6),8(14),13(15)-trien-16,12-olide (1), mangiolide (2), 8,14ß:11,12α-diepoxy-13(15)-abietane-16,12-olide (3), 7ß,11ß,12ß-trihydroxy-ent-abieta-8(14),13(15)-diene-16,12-olide (4), 8α,14-dihydro-7-oxo-jolkinolide E (5), jolkinolide A (6), together with 3ß-sitosterol (7), scopoletin (8) and vanillin (9). Their structures were deduced through 1D and 2D NMR spectroscopic techniques, and HRESIMS, as well as by comparison of the NMR data with those reported in the literature. The crude extract and compounds 1-9 were evaluated for their antiplasmodial, antifungal and antibacterial activities. Mangiolide (2) showed strong in vitro antiplasmodial activity against chloroquine sensitive (D6) and resistant (W2) strains of Plasmodium falciparum with IC50 values of 0.79 and 0.87 µg/mL, respectively, while 3 (IC50 1.24 and 1.17 µg/mL) was less active than 2. Compound 2 also displayed antimicrobial activity against Cryptococcus neoformans, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) with IC50 values of 1.20, 3.90 and 7.20 µg/mL, respectively.


Subject(s)
Antimalarials , Methicillin-Resistant Staphylococcus aureus , Suregada , Abietanes , Antimalarials/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Nat Prod Res ; 36(9): 2321-2328, 2022 May.
Article in English | MEDLINE | ID: mdl-33103456

ABSTRACT

Monoterpene derivatives are of great biological relevance in the pharmaceutical industry. In the present study, pyrrolidine derivative of a carvotacetone, 3-O-benzylcarvotacetone (1), and selected monoterpenes (3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone (3) and cis-piperitol (5)) were prepared to provide (R)-1-(4-(benzyloxy)-5-isopropyl-2-methylcyclohexa-1,3-dien-1-yl)-pyrrolidine (2), 2-isopropyl-5-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl acetate (4), cis-3-hydroxypiperitone (6) and carvacrol (7). Structure of 2 was determined based on NMR and HRMS spectral data. Compound 4 exhibited activity against fungi Cryptococcus neoformans with an IC50 value of < 0.8 µg/mL. In addition, this compound 4 had an IC50 value of 14.97 µg/mL against methicillin resistant Staphylococcus aureus bacteria. Previous to the current study, both compound 6 and 7 had been reported to have anti-microbial and anti-fungal activities.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cyclohexanones , Microbial Sensitivity Tests , Monoterpenes/pharmacology , Pyrrolidines
4.
Nat Prod Res ; 35(21): 3599-3607, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31997645

ABSTRACT

In an attempt to synthesize carvotacetone analogues, new 3-O-benzyl-carvotacetone (10) and previously reported 3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone (11) were synthesized from piperitone (7). In this work, we describe the synthesis of 10 and other analogues from 7. Luche reduction of 7 to cis-piperitol (8), followed by benzylation yielded 3-O-benzyl-piperitol (9). Riley oxidation of 9 afforded corresponding ketone 10, 11 and 3-benzyloxy-4-isopropylcyclohex-1-enecarbaldehyde (12). Structures of these compounds were determined based on NMR, IR and LC-MS spectral data. Compound 11, exhibited antiplasmodial activities against chloroquine-sensitive (D6) and resistant (W2) strains of Plasmodium falciparum with IC50 values of 0.697 and 0.653 µg/mL, respectively. In addition, compound 11 was active against Cryptococcus neoformans with an IC50 value of 3.11 µg/mL, compared to reference standard fluconazole (IC50 value of 1.87 µg/mL), while 10 and 12 were inactive against both organisms. This is the first report of the antiplasmodial and anticryptococcal activity of compound 11.


Subject(s)
Anti-Infective Agents , Antimalarials , Anti-Infective Agents/pharmacology , Antimalarials/pharmacology , Benzoquinones/pharmacology , Cyclohexanones , Plasmodium falciparum
5.
Nat Prod Res ; 35(4): 579-586, 2021 Feb.
Article in English | MEDLINE | ID: mdl-30896260

ABSTRACT

In our continuous search for cytotoxic compounds from the genus Zanthoxylum, chromatographic separation of the MeOH/CH2Cl2 (1:1) extract of Z. chalybeum yielded one new alkamide; 4-(isoprenyloxy)-3-methoxy-3,4-deoxymethylenedioxyfagaramide (1) and a known one; fagaramide (2). Similarly, from the MeOH/CH2Cl2 (1:1) extract of the stem bark of Z. parachanthum four known compounds; canthin-6-one (3), dihydrochelerythrine (4), lupeol (5) and sesamin (6) were isolated. Characterization of the structures of these compounds was achieved using spectroscopic techniques (NMR and MS). Using resazurin reduction assay 1, 3 and 6 displayed moderate cytotoxicity with IC50 values below 50 µM against the drug sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cell lines. It is interesting to note that 3 was more active than the standard drug, doxorubicin against CEM/ADR5000 leukemia cells. Compounds 3 and 6 showed good selectivity on leukemia cells than normal cells. In future studies 3 should be tested against a panel of drug resistant human cells.


Subject(s)
Carbolines/therapeutic use , Cinnamates/therapeutic use , Dioxoles/therapeutic use , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Indole Alkaloids/therapeutic use , Leukemia/drug therapy , Polyunsaturated Alkamides/therapeutic use , Zanthoxylum/chemistry , Apoptosis/drug effects , Carbolines/chemistry , Carbolines/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line, Tumor , Cinnamates/chemistry , Cinnamates/pharmacology , Dioxoles/chemistry , Dioxoles/pharmacology , Humans , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/chemistry , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology
6.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212830

ABSTRACT

A set of structurally related O-methylated flavonoid natural products isolated from Senecio roseiflorus (1), Polygonum senegalense (2 and 3), Bhaphia macrocalyx (4), Gardenia ternifolia (5), and Psiadia punctulata (6) plant species were characterized for their interaction with human monoamine oxidases (MAO-A and -B) in vitro. Compounds 1, 2, and 5 showed selective inhibition of MAO-A, while 4 and 6 showed selective inhibition of MAO-B. Compound 3 showed ~2-fold selectivity towards inhibition of MAO-A. Binding of compounds 1-3 and 5 with MAO-A, and compounds 3 and 6 with MAO-B was reversible and not time-independent. The analysis of enzyme-inhibition kinetics suggested a reversible-competitive mechanism for inhibition of MAO-A by 1 and 3, while a partially-reversible mixed-type inhibition by 5. Similarly, enzyme inhibition-kinetics analysis with compounds 3, 4, and 6, suggested a competitive reversible inhibition of MAO-B. The molecular docking study suggested that 1 selectively interacts with the active-site of human MAO-A near N5 of FAD. The calculated binding free energies of the O-methylated flavonoids (1 and 4-6) and chalcones (2 and 3) to MAO-A matched closely with the trend in the experimental IC50's. Analysis of the binding free-energies suggested better interaction of 4 and 6 with MAO-B than with MAO-A. The natural O-methylated flavonoid (1) with highly potent inhibition (IC50 33 nM; Ki 37.9 nM) and >292 fold selectivity against human MAO-A (vs. MAO-B) provides a new drug lead for the treatment of neurological disorders.


Subject(s)
Biological Products/metabolism , Flavonoids/metabolism , Monoamine Oxidase/metabolism , Biological Products/chemistry , Biological Products/isolation & purification , Enzyme Inhibitors/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Humans , Kinetics , Methylation , Monoamine Oxidase/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Recombinant Proteins/metabolism , Time Factors
7.
Phytomedicine ; 53: 319-331, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30190231

ABSTRACT

BACKGROUND: Practices of biopiracy to use genetic resources and indigenous knowledge by Western companies without benefit-sharing of those, who generated the traditional knowledge, can be understood as form of neocolonialism. HYPOTHESIS: The One-World Medicine concept attempts to merge the best of traditional medicine from developing countries and conventional Western medicine for the sake of patients around the globe. STUDY DESIGN: Based on literature searches in several databases, a concept paper has been written. Legislative initiatives of the United Nations culminated in the Nagoya protocol aim to protect traditional knowledge and regulate benefit-sharing with indigenous communities. The European community adopted the Nagoya protocol, and the corresponding regulations will be implemented into national legislation among the member states. Despite pleasing progress, infrastructural problems of the health care systems in developing countries still remain. Current approaches to secure primary health care offer only fragmentary solutions at best. Conventional medicine from industrialized countries cannot be afforded by the impoverished population in the Third World. Confronted with exploding costs, even health systems in Western countries are endangered to burst. Complementary and alternative medicine (CAM) is popular among the general public in industrialized countries, although the efficacy is not sufficiently proven according to the standards of evidence-based medicine. CAM is often available without prescription as over-the-counter products with non-calculated risks concerning erroneous self-medication and safety/toxicity issues. The concept of integrative medicine attempts to combine holistic CAM approaches with evidence-based principles of conventional medicine. CONCLUSION: To realize the concept of One-World Medicine, a number of standards have to be set to assure safety, efficacy and applicability of traditional medicine, e.g. sustainable production and quality control of herbal products, performance of placebo-controlled, double-blind, randomized clinical trials, phytovigilance, as well as education of health professionals and patients.


Subject(s)
International Cooperation , Medicine, Traditional , Plants, Medicinal , Theft , Biodiversity , Colonialism , Complementary Therapies , Developing Countries , Double-Blind Method , European Union , Evidence-Based Medicine , Humans , Medicine, Traditional/standards , Naturopathy , Patents as Topic , Quality Control , Self Medication
8.
J Ayurveda Integr Med ; 10(3): 178-184, 2019.
Article in English | MEDLINE | ID: mdl-30389223

ABSTRACT

BACKGROUND: Cancer constitutes a major hurdle worldwide and its treatment mainly relies on chemotherapy. OBJECTIVES: The present study was designed to evaluate the cytotoxicity of eleven naturally occurring compounds including six phenolics amongst them were 4 chalcones and 2 flavanones as well as 5 terpenoids (3 clerodane and 2 trachylobane diterpenoids) against 6 human carcinoma cell lines and normal CRL2120 fibroblasts. MATERIALS AND METHODS: The neutral red uptake (NR) assay was used to evaluate the cytotoxicity of the compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle and mitochondrial membrane potential (MMP) were all analyzed via flow cytometry meanwhile levels of reactive oxygen species (ROS) was measured by spectrophotometry. RESULTS: Chalcones: 2',4'-dihydroxy-6'-methoxychalcone (1); 4',6'-dihydroxy-2',5'-dimethoxychalcone (2); 2',4',6'-trihydroxy-5'-methoxychalcone (3); 2',6'-diacetate-4'-methoxychalcone (4), trachylobane diterpenoids: 2,6,19-trachylobanetriol; (ent-2α,6α)-form (10) and 2,18,19-trachylobanetriol; (ent-2α)-form (11) as well as doxorubicin displayed IC50 values below 110 µM in the six tested cancer cell lines. The IC50 values of the most active compounds were between 6.30 µM and 46.23 µM for compound 1 respectively towards breast adenocarcinoma MCF-7 cells and small lung cancer A549 cells and between 0.07 µM and 1.01 µM for doxorubicin respectively against SPC212 cells and A549 cells. Compounds 1 induced apoptosis in MCF-7 cells mediated by increasing ROS production and MMP loss. CONCLUSION: Chalcones 1-3 are potential cytotoxic phytochemicals that deserve more investigations to develop novel anticancer drugs against human carcinoma.

9.
Phytochemistry ; 144: 1-8, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28863305

ABSTRACT

Four previously undescribed diterpenoids including two crotofolanes, crotodichogamoin A and B, and two halimanes, crothalimene A and B, a new sesquiterpenoid, and fifteen previously reported compounds, including the crotofolane, crotohaumanoxide, the casbane, depressin, a further seven furanohalimane diterpenoids, three patchoulane and two further cadinane sesquiterpenoids and aleuritolic acid were isolated from the root of Croton dichogamus. Crotodichogamoin B is an important biosynthetic intermediate of the crotofolane class and this is the first report of patchoulene sesquiterpenoids from the genus. Compounds were tested at one concentration, 1 × 10-5 M, in the NCI59 cell one-dose screen but did not show significant activity snd were also evaluated for their cytotoxicity against Caco-2 cell lines using the neutral red assay. 10-epi-Maninsigin D reduced Caco-2 cell viability at 10, 30 and 100 µM, with values of decreased viability of 28%, 48% and 43% respectively. None of the other tested compounds showed significant activity.


Subject(s)
Croton/chemistry , Diterpenes/pharmacology , Plant Roots/chemistry , Caco-2 Cells , Cell Survival/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Humans , Molecular Conformation , Structure-Activity Relationship
10.
J Agric Food Chem ; 65(8): 1489-1495, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28161946

ABSTRACT

Kaurenoic acid derivatives were prepared and submitted to in vitro assays with the fungus Colletotrichum lindemuthianum, which causes anthracnose disease in the common bean. The most active substances were found to be methyl and p-bromobenzylesters, 7 and 9, respectively, of the hydrogenated kaurenoic acid, which presented a minimum inhibitory concentration (MIC) of 0.097 and 0.131 mM, respectively, while the commercial fungicide methyl thiophanate (MT) presented a MIC of 0.143 mM. Substances 7 (1.401 mM) and 9 (1.886 mM) reduced the severity of anthracnose in common bean to values statistically comparable to MT (2.044 mM). According to an in silico study, both compounds 7 and 9 are inhibitors of the ketosteroid isomerase (KSI) enzyme produced by other organisms, the amino acid sequence of which could be detected in fungal genomes. These substances appeared to act against C. lindemuthianum by inhibiting its KSI. Therefore, substances 7 and 9 are promising for the development of new fungicides.


Subject(s)
Colletotrichum/drug effects , Diterpenes/chemistry , Diterpenes/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Phaseolus/microbiology , Plant Diseases/microbiology , Colletotrichum/physiology , Esters/pharmacology , Molecular Structure
11.
Nat Prod Res ; 31(5): 529-536, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27373319

ABSTRACT

A new ß-carboline alkaloid named sacleuximine A (1) together with known compounds palmatine (2), isotetrandrine (3), trans-N-feruloyltyramine (4), trans-N-caffeoyltyramine (5), yangambin (6), syringaresinol (7), sesamin (8), (+) epi-quercitol (9), 4-hydroxybenzaldehyde (10), ß-sitosterol (11), quercetin 3-O-rutinoside (12) and myricetin 3-O-ß-glucose (1→6) α-rhamnoside (13) have been isolated from methanol extract of Triclisia sacleuxii aerial parts. Compounds 1-10 were evaluated for their cytotoxicity against human adenocarcinoma (HeLa), human hepatocarcinoma (Hep3B) and human breast carcinoma (MCF-7) cells lines and also for antibacterial activities against both Gram-positive and Gram-negative bacteria. The cytotoxicity (IC50) values ranged between 0.15 and 36.7 µM while the minimum inhibitory concentrations were found to be in the range of 3.9 and 125 µM, respectively. This is the first report of antibacterial compounds and the isolation of lignans together with a ß-carboline alkaloid from T. sacleuxii.


Subject(s)
Alkaloids/isolation & purification , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Carbolines/isolation & purification , Menispermaceae/chemistry , Plant Extracts/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Plant Components, Aerial/chemistry
12.
Front Pharmacol ; 8: 920, 2017.
Article in English | MEDLINE | ID: mdl-29311927

ABSTRACT

Infections caused by Mycoplasma species belonging to the 'mycoides cluster' negatively affect the agricultural sector through losses in livestock productivity. These Mycoplasma strains are resistant to many conventional antibiotics due to the total lack of cell wall. Therefore, there is an urgent need to develop new antimicrobial agents from alternative sources such as medicinal plants to curb the resistance threat. Recent studies on extracts from Solanum aculeastrum and Piliostigma thonningii revealed interesting antimycoplasmal activities hence the motivation to investigate the antimycoplasmal activities of constituent compounds. The CH2Cl2/MeOH extracts from the berries of S. aculeastrum yielded a new ß-sitosterol derivative (1) along with six known ones including; lupeol (2), two long-chain fatty alcohols namely undecyl alcohol (3) and lauryl alcohol (4); two long-chain fatty acids namely; myristic acid (5) and nervonic acid (6) as well as a glycosidic steroidal alkaloid; (25R)-3ß-O-α-L-rhamnopyranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyloxy-22α-N-spirosol-5-ene (7) from the MeOH extracts. A new furan diglycoside, (2,5-D-diglucopyranosyloxy-furan) (8) was also characterized from the CH2Cl2/MeOH extract of stem bark of P. thonningii. The structures of the compounds were determined on the basis of spectroscopic evidence and comparison with literature data. Compounds 1, 3, 4, 7, and 8 isolated in sufficient yields were tested against the growth of two Mycoplasma mycoides subsp. mycoides (Mmm), two M. mycoides. capri (Mmc), and one M. capricolum capricolum (Mcc) using broth dilution methods, while the minimum inhibitory concentration (MIC) was determined by serial dilution. The inhibition of Mycoplasma in vitro growth was determined by the use of both flow cytometry (FCM) and color change units (CCU) methods. Compounds 4 and 7 showed moderate activity against the growth of Mmm and Mmc but were inactive against the growth of Mcc. The lowest MIC value was 50 µg/ml for compound 7 against Mmm. The rest of the compounds showed minimal or no activity against the strains of Mycoplasma mycoides tested. This is the first report on the use of combined FCM and CCU to determine inhibition of in vitro growth of Mycoplasma mycoides. The activity of these compounds against other bacterial strains should be tested and their safety profiles determined.

13.
Nat Prod Commun ; 12(5): 763-769, 2017 May.
Article in English | MEDLINE | ID: mdl-30496662

ABSTRACT

A set of seven diterpenes, three kauranes and four trachylobanes, isolated from the African plant Psiadia punctulata were assayed against Mycobacterium tuberculosis and reached activity comparable with cycloserine, a second line drug used to treat tuberculosis (TB). Several structural properties of those diterpenes, such as lipophilicity, HOMO and LUMO energies, charge density, and intramolecular hydrogen bond (IHB) formation, were obtained by theoretical calculations and compared with their activities. Peculiar correlations were observed, especially between activity, lipophilicity and IHB formation.


Subject(s)
Antitubercular Agents/pharmacology , Diterpenes/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemistry , Asteraceae/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Computer Simulation , Diterpenes/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
14.
BMC Pharmacol Toxicol ; 17(1): 60, 2016 12 21.
Article in English | MEDLINE | ID: mdl-27998305

ABSTRACT

BACKGROUND: Cancer is a major public health concern globally and chemotherapy remains the principal mode of the treatment of various malignant diseases. METHODS: This study was designed to investigate the cytotoxicity of 14 naturally occurring quinones including; 3 anthraquinones, 1 naphthoquinone and 10 benzoquinones against 6 human carcinoma cell lines and normal CRL2120 fibroblasts. The neutral red uptake (NR) assay was used to evaluate the cytotoxicity of the compounds, whilst caspase-Glo assay was used to detect caspases activation. Cell cycle and mitochondrial membrane potential (MMP) were all analyzed via flow cytometry meanwhile levels of reactive oxygen species (ROS) were measured by spectrophotometry. RESULTS: Anthraquinone: emodin (2), naphthoquinone: plumbagin (4), and benzoquinones: rapanone (9), 2,5-dihydroxy-3-pentadecyl-2,5-cyclohexadiene-1,4-dione (10), 5-O-methylembelin (11), 1,2,4,5-tetraacetate-3-methyl-6-(14-nonadecenyl)-cyclohexadi-2,5-diene (13), as well as doxorubicin displayed interesting activities with IC50 values below 100 µM in the six tested cancer cell lines. The IC50 values ranged from 37.57 µM (towards breast adenocarcinoma MCF-7 cells) to 99.31 µM (towards small cell lung cancer A549 cells) for 2, from 0.06 µM (MCF-7 cells) to 1.14 µM (A549 cells) for 4, from 2.27 µM (mesothelioma SPC212 cells) to 46.62 µM (colorectal adenocarcinoma DLD-1 cells) for 9, from 8.39 µM (SPC212 cells) to 48.35 µM (hepatocarinoma HepG2 cells) for 10, from 22.57 µM (MCF-7 cells) to 61.28 µM (HepG2 cells) for 11, from 9.25 µM (MCF-7 cells) to 47.53 µM (A549 cells) for 13, and from 0.07 µM (SPC212 cells) to 1.01 µM (A549 cells) for doxorubicin. Compounds 4 and 9 induced apoptosis in MCF-7 cells mediated by increased ROS production and MMP loss, respectively. CONCLUSION: The tested natural products and mostly 2, 4, 9, 10, 11 and 13 are potential cytotoxic compounds that deserve more investigations towards developing novel antiproliferative drugs against human carcinoma.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Benzoquinones/toxicity , Naphthoquinones/toxicity , Plant Extracts/toxicity , Quinones/toxicity , A549 Cells , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Apoptosis/physiology , Benzoquinones/chemistry , Benzoquinones/isolation & purification , Caco-2 Cells , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Line, Tumor , Hep G2 Cells , Humans , Kenya/epidemiology , MCF-7 Cells , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Quinones/chemistry , Quinones/isolation & purification
15.
J Ethnopharmacol ; 192: 524-534, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27649681

ABSTRACT

ETHNOPHARMOCOLOGICAL RELEVANCE: Members of 'Mycoplasma mycoides cluster' are important ruminant pathogens in Africa. Diseases caused by these Mycoplasma negatively affect the agricultural sector especially in developing countries through losses in livestock productivity, mortality and international trade restrictions. There is therefore urgent need to develop antimicrobials from alternative sources such as medicinal plants to curb these diseases. In Kenya, smallholder farmers belonging to the Maasai, Kuria and Luo rely on traditional Kenyan herbals to treat respiratory symptoms in ruminants. In the current study extracts from some of these plants were tested against the growth of members of Mycoplasma mycoides cluster. AIM: This study aimed at identifying plants that exhibit antimycoplasmal activities using an ethnobotanical approach. MATERIALS AND METHODS: Kenyan farmers of Maasai, Luo and Kuria ethnic groups were interviewed for plant remedies given to livestock with respiratory syndromes. The plant materials were thereafter collected and crude extracts prepared using a mixture of 50% of methanol (MeOH) in dichloromethane (CH2Cl2), neat methanol (MeOH), ethanol (EtOH) and water to yield four crude extracts per plant part. The extracts were tested in vitro against five strains of Mycoplasma mycoides subsp. capri, five strains of Mycoplasma mycoides subsp. mycoides and one strain of Mycoplasma capricolum subsp capricolum using broth micro-dilution assays with an initial concentration of 1mg/ml. Minimum inhibitory concentration (MIC) of the most active extracts were determined by serial dilution. RESULTS: Extracts from five plants namely: Solanum aculeastrum, Albizia coriaria, Ekebergia capensis, Piliostigma thonningii and Euclea divinorum exhibited the highest activities against the Mycoplasma strains tested. Mycoplasma mycoides subsp. mycoides were more susceptible to these extracts than Mycoplasma mycoides subsp. capri and Mycoplasma capricolum susp. capricolum. The activities of the crude extracts varied with the solvent used for extraction. The MICs mean values of the active extracts varied from 0.02 to 0.6mg/ml. CONCLUSIONS: The results suggested that these plants could potentially contain antimicrobial compounds that might be useful for the treatment of respiratory diseases in ruminants. Future work should focus on the isolation and identification of the active compounds from the plant extracts that showed interesting activities and evaluation of their antimicrobial and cytotoxic potential.


Subject(s)
Anti-Bacterial Agents/pharmacology , Livestock/microbiology , Mycoplasma mycoides/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Pleuropneumonia, Contagious/drug therapy , Veterinary Drugs/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Ethnobotany , Ethnopharmacology , Farmers , Interviews as Topic , Kenya , Microbial Sensitivity Tests , Phytotherapy/veterinary , Plant Extracts/isolation & purification , Pleuropneumonia, Contagious/microbiology , Solvents/chemistry , Veterinary Drugs/isolation & purification
16.
Springerplus ; 5(1): 901, 2016.
Article in English | MEDLINE | ID: mdl-27386347

ABSTRACT

In the current study forty eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (clerodanes and kauranes) were explored for their antimicrobial potential against a panel of sensitive and multi-drug resistant Gram-negative and Gram-positive bacteria. The minimal inhibitory concentration (MIC) determinations on the tested bacteria were conducted using modified rapid INT colorimetric assay. To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to the most active compounds, they were tested in the presence of phenylalanine arginine ß-naphthylamide (PAßN) (at 30 µg/mL) against selected multidrug resistance (MDR) bacteria. The anthraquinone, emodin, naphthaquinone, plumbagin and the benzoquinone, rapanone were active against methicillin resistant Staphylococcus aureus (MRSA) strains of bacteria with MIC values ranging from 2 to 128 µg/mL. The structure activity relationships of benzoquinones against the MDR Gram-negative phenotype showed antibacterial activities increasing with increase in side chain length. In the chalcone series the presence of a hydroxyl group at C3' together with a methoxy group and a second hydroxyl group in meta orientation in ring B of the chalcone skeleton appeared to be necessary for minimal activities against MRSA. In most cases, the optimal potential of the active compounds were not attained as they were extruded by bacterial efflux pumps. However, the presence of the PAßN significantly increased the antibacterial activities of emodin against Gram-negative MDR E. coli AG102, 100ATet; K. pneumoniae KP55 and KP63 by >4-64 g/mL. The antibacterial activities were substantially enhanced and were higher than those of the standard drug, chloramphenicol. These data clearly demonstrate that the active compounds, having the necessary pharmacophores for antibacterial activities, including some quinones and chalcones are substrates of bacterial efflux pumps and therefore should be combined to efflux pump inhibitors in the fight against MDR bacterial infections.

17.
Planta Med ; 82(11-12): 1079-86, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27286332

ABSTRACT

The roots of the endangered medicinal plant Croton megalocarpoides collected in Kenya were investigated and twenty-two compounds isolated. Among them were twelve new ent-clerodane (1-12) and a new abietane (13) diterpenoids, alongside the known crotocorylifuran (4 a), two known abietane and four known ent-trachylobane diterpenoids, and the triterpenoids, lupeol and acetyl aleurotolic acid. The structures of the compounds were determined using NMR, HRMS and ECD. The isolated compounds were evaluated against a series of microorganisms (fungal and bacteria) and also against Plasmodium falciparum, however no activity was observed.


Subject(s)
Abietanes/isolation & purification , Croton/chemistry , Diterpenes, Clerodane/isolation & purification , Abietanes/chemistry , Diterpenes, Clerodane/chemistry , Endangered Species , Kenya , Molecular Structure , Plant Roots/chemistry , Plants, Medicinal/chemistry
18.
Phytomedicine ; 23(2): 166-73, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26926178

ABSTRACT

BACKGROUND: Biopiracy mainly focuses on the use of biological resources and/or knowledge of indigenous tribes or communities without allowing them to share the revenues generated out of economic exploitation or other non-monetary incentives associated with the resource/knowledge. METHODS: Based on collaborations of scientists from five continents, we have created a communication platform to discuss not only scientific topics, but also more general issues with social relevance. This platform was termed 'PhytCancer -Phytotherapy to Fight Cancer' (www.phyt-cancer.uni-mainz.de). As a starting point, we have chosen the topic "biopiracy", since we feel this is of pragmatic significance for scientists working with medicinal plants. RESULTS: It was argued that the patenting of herbs or natural products by pharmaceutical corporations disregarded the ownership of the knowledge possessed by the indigenous communities on how these substances worked. Despite numerous court decisions in U.S.A. and Europe, several international treaties, (e.g. from United Nations, World Health Organization, World Trade Organization, the African Unity and others), sharing of a rational set of benefits amongst producers (mainly pharmaceutical companies) and indigenous communities is yet a distant reality. In this paper, we present an overview of the legal frameworks, discuss some exemplary cases of biopiracy and bioprospecting as excellent forms of utilization of natural resources. CONCLUSIONS: We suggest certain perspectives, by which we as scientists, may contribute towards prevention of biopiracy and also to foster the fair utilization of natural resources. We discuss ways, in which the interests of indigenous people especially from developing countries can be secured.


Subject(s)
Biological Products , Bioprospecting/ethics , Drug Industry/ethics , Ethnopharmacology , Ownership , Plants, Medicinal , Theft , Developing Countries , International Cooperation , Patents as Topic
19.
J Ethnopharmacol ; 179: 177-96, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26721219

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plants from Kenyan flora are traditionally used against many ailments, including cancer and related diseases. Cancer is characterized as a condition with complex signs and symptoms. Recently there are recommendations that ethnopharmacological usages such as immune and skin disorders, inflammatory, infectious, parasitic and viral diseases should be taken into account when selecting plants that treat cancer. AIM: The present study was aimed at investigating the cytotoxicity of a plethora of 145 plant parts from 91 medicinal plants, most of which are used in the management of cancer and related diseases by different communities in Kenya, against CCRF-CEM leukemia cell line. MATERIALS AND METHODS: Extracts from different plant parts (leaves, stems, stem bark, roots, root barks, aerial parts and whole herb) were obtained by cold percolation using different solvent systems, such as (1:1v/v) dichloromethane (CH2Cl2) and n-hexane (1), methanol (MeOH) and CH2Cl2 (2); neat MeOH (3), 5% H2O in MeOH (4) and with ethanol (EtOH, 5); their cytotoxicities were determined using the resazurin reduction assay against CCRF-CEM cells. RESULTS: At a single concentration of 10µg/mL, 12 out of 145 extracts exhibited more than 50% cell inhibition. These include samples from the root bark of Erythrina sacleuxii (extracted with 50% n-hexane-CH2Cl2), the leaves of Albizia gummifera, and Strychnos usambarensis, the stem bark of Zanthoxylum gilletii, Bridelia micrantha, Croton sylvaticus, and Albizia schimperiana; the root bark of Erythrina burttii and E. sacleuxii (extracted with 50% CH2Cl2-MeOH), the stem bark of B. micrantha and Z. gilletii (extracted using 5% MeOH-H2O) and from the berries of Solanum aculeastrum (extracted with neat EtOH). The EtOH extract of the berries of S. aculeastrum and A. schimperiana stem bark extract displayed the highest cytotoxicity towards leukemia CCRF-CEM cells, with IC50 values of 1.36 and 2.97µg/mL, respectively. Other extracts having good activities included the extracts of the stem barks of Z. gilletii and B. micrantha and leaves of S. usambarensis with IC50 values of 9.04, 9.43 and 11.09µg/mL, respectively. CONCLUSIONS: The results of this study provided information related to the possible use of some Kenyam medicinal plants, and mostly S. aculeastrum, A. schimperiana, C. sylvaticus, Z. gilletii, B. micrantha and S. usambarensis in the treatment of leukemia. The reported data helped to authenticate the claimed traditional use of these plants. However, most plants are used in combination as traditional herbal concoctions. Hence, the cytotoxicity of corresponding plant combinations should be tested in vitro to authenticate the traditional medical practitioners actual practices.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Growth Inhibitors/pharmacology , Leukemia/pathology , Plant Extracts/pharmacology , Plants, Medicinal , Cell Line, Tumor , Cell Survival/drug effects , Humans , Kenya
20.
Nat Prod Commun ; 11(11): 1679-1682, 2016 Nov.
Article in English | MEDLINE | ID: mdl-30475506

ABSTRACT

The pond-raised channel catfish (Ictaluruspunctatus) industry in the United States of America can incur losses of over a $100 million annually due to bacterial diseases including columnaris disease caused by Flavobacterium columnare. One management approach available to catfish producers is the use of medicated- feed containing antibiotics. However, the negative attributes of antibiotic use in agriculture include public concerns and the potential development of antibiotic-resistant bacteria. Therefore, the discovery of environmentally-safe natural compounds for use as therapeutic agents would greatly benefit the catfish industry. In this study, a rapid bioassay was used to evaluate crude plant extracts as the first step in the discovery of natural therapeutants. Plant extracts from Terminalia brownii were found to be inhibitory towards F. columnare. The minimum inhibitory concentration (MIC) of the 5% water-methanol extract ofT. brownii (stem bark) was 10 µg/mL and the 24 h 50% inhibition concentration (IC(50)) was 40 pg/mL. Subsequent bioassay-guided fractionation of the T. brownR ethanol extract using reverse phase C-4 chromatography revealed the highest level of activity in the aqueous:methanol (50:50) fraction. HPLC analysis and subsequent purification of this fraction provided two compounds identified as ellagic acid (1) and 4-O-(3",4"-di-O-galloyl-a-L-rhamnopyrahosyl)ellagic acid (2). Compound 2 was the most active isolated compound, with a minimum inhibitory concentration (MIC) of 10±0 µg/mL and 24 h IC(50) of 31±1 µg/mL. Although 1 was more active according to a MIC of 6±5 µg/mL, its 24 h IC(50) was >100 µg/mL, and, therefore, it was less active overall of the two most active isolated compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Combretaceae/chemistry , Ellagic Acid/analogs & derivatives , Flavobacterium/drug effects , Plant Extracts/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Biological Assay , Catfishes/microbiology , Ellagic Acid/chemistry , Ellagic Acid/isolation & purification , Ellagic Acid/pharmacology , Fish Diseases/microbiology , Microbial Sensitivity Tests , Molecular Structure , Plant Bark
SELECTION OF CITATIONS
SEARCH DETAIL
...