Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38766126

ABSTRACT

The majority of human breast cancers are dependent on hormone-stimulated estrogen receptor alpha (ER) and are sensitive to its inhibition. Treatment resistance arises in most advanced cancers due to genetic alterations that promote ligand independent activation of ER itself or ER target genes. Whereas re-targeting of the ER ligand binding domain (LBD) with newer ER antagonists can work in some cases, these drugs are largely ineffective in many genetic backgrounds including ER fusions that lose the LBD or in cancers that hyperactivate ER targets. By identifying the mechanism of ER translation, we herein present an alternative strategy to target ER and difficult to treat ER variants. We find that ER translation is cap-independent and mTOR inhibitor insensitive, but dependent on 5' UTR elements and sensitive to pharmacologic inhibition of the translation initiation factor eIF4A, an mRNA helicase. EIF4A inhibition rapidly reduces expression of ER and short-lived targets of ER such as cyclin D1 and other components of the cyclin D-CDK complex in breast cancer cells. These effects translate into suppression of growth of a variety of ligand-independent breast cancer models including those driven by ER fusion proteins that lack the ligand binding site. The efficacy of eIF4A inhibition is enhanced when it is combined with fulvestrant-an ER degrader. Concomitant inhibition of ER synthesis and induction of its degradation causes synergistic and durable inhibition of ER expression and tumor growth. The clinical importance of these findings is confirmed by results of an early clinical trial ( NCT04092673 ) of the selective eIF4A inhibitor zotatifin in patients with estrogen receptor positive metastatic breast cancer. Multiple clinical responses have been observed on combination therapy including durable regressions. These data suggest that eIF4A inhibition could be a useful new strategy for treating advanced ER+ breast cancer.

2.
Cell Rep ; 43(2): 113810, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377004

ABSTRACT

Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases. Unsupervised mass spectrometry-based proteomics of 135 primary and 123 metastatic CRCs uncovered distinct proteomic subtypes, three each for primary and metastatic CRCs, respectively. Integrated analyses revealed that hypoxia, stemness, and immune signatures characterize these 6 subtypes. Hypoxic CRC harbors high epithelial-to-mesenchymal transition features and metabolic adaptation. CRC with a stemness signature shows high oncogenic pathway activation and alternative telomere lengthening (ALT) phenotype, especially in metastatic lesions. Tumor microenvironment analysis shows immune evasion via modulation of major histocompatibility complex (MHC) class I/II and antigen processing pathways. This study characterizes both primary and metastatic CRCs and provides a large proteogenomics dataset of metastatic progression.


Subject(s)
Colorectal Neoplasms , Proteogenomics , Humans , Proteome , Proteomics , Genomics , Colorectal Neoplasms/genetics , Histocompatibility Antigens Class II , Hypoxia , Tumor Microenvironment
3.
STAR Protoc ; 5(1): 102843, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38294909

ABSTRACT

Ubiquitin-like protein ISG15 plays an important role in an array of cellular functions via its covalent attachment to target proteins (ISGylation). Here, we present a protocol for the identification of ISGylated proteins that avoids the caveats associated with ISG15 overexpression and minimizes the likelihood of false positives. We describe steps for the tagging of endogenous ISG15, followed by genotyping and clone selection. We then detail steps for ISGylation induction, the isolation of ISGylated proteins, and their identification via quantitative mass spectrometry. For complete details on the use and execution of this protocol, please refer to Wardlaw and Petrini.1.


Subject(s)
Cytokines , Ubiquitins , Animals , Cytokines/genetics , Cytokines/metabolism , Ubiquitins/genetics , Ubiquitins/chemistry , Ubiquitins/metabolism , Cell Line , Mammals/metabolism
5.
Nature ; 615(7951): 339-348, 2023 03.
Article in English | MEDLINE | ID: mdl-36859550

ABSTRACT

Trimethylation of histone H3 lysine 4 (H3K4me3) is associated with transcriptional start sites and has been proposed to regulate transcription initiation1,2. However, redundant functions of the H3K4 SET1/COMPASS methyltransferase complexes complicate the elucidation of the specific role of H3K4me3 in transcriptional regulation3,4. Here, using mouse embryonic stem cells as a model system, we show that acute ablation of shared subunits of the SET1/COMPASS complexes leads to a complete loss of all H3K4 methylation. Turnover of H3K4me3 occurs more rapidly than that of H3K4me1 and H3K4me2 and is dependent on KDM5 demethylases. Notably, acute loss of H3K4me3 does not have detectable effects on transcriptional initiation but leads to a widespread decrease in transcriptional output, an increase in RNA polymerase II (RNAPII) pausing and slower elongation. We show that H3K4me3 is required for the recruitment of the integrator complex subunit 11 (INTS11), which is essential for the eviction of paused RNAPII and transcriptional elongation. Thus, our study demonstrates a distinct role for H3K4me3 in transcriptional pause-release and elongation rather than transcriptional initiation.


Subject(s)
Histones , Mouse Embryonic Stem Cells , Promoter Regions, Genetic , RNA Polymerase II , Transcription Elongation, Genetic , Transcription Termination, Genetic , Animals , Mice , Gene Expression Regulation , Histone Demethylases/metabolism , Histones/chemistry , Histones/metabolism , Methylation , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism
7.
Nucleic Acids Res ; 51(7): 3094-3115, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36794724

ABSTRACT

Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.


Subject(s)
Phosphates , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Phosphates/metabolism , Repressor Proteins/metabolism , Ribosomal Proteins/genetics , RNA, Transfer/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Transcription, Genetic
8.
Nat Med ; 28(2): 345-352, 2022 02.
Article in English | MEDLINE | ID: mdl-35027758

ABSTRACT

Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR. We demonstrate that these HLA-independent T cell receptors (HIT receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based CARs, the most sensitive design to date, can provide. We demonstrate that the functional persistence of HIT T cells can be augmented by constitutive coexpression of CD80 and 4-1BBL. Finally, we validate the increased antigen sensitivity afforded by HIT receptors in xenograft mouse models of B cell leukemia and acute myeloid leukemia, targeting CD19 and CD70, respectively. Overall, HIT receptors are well suited for targeting cell surface antigens of low abundance.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Animals , Antigens, CD19 , Histocompatibility Antigens , Humans , Immunotherapy, Adoptive , Mice , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays
9.
Nat Commun ; 12(1): 7311, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911956

ABSTRACT

Copper serves as a co-factor for a host of metalloenzymes that contribute to malignant progression. The orally bioavailable copper chelating agent tetrathiomolybdate (TM) has been associated with a significant survival benefit in high-risk triple negative breast cancer (TNBC) patients. Despite these promising data, the mechanisms by which copper depletion impacts metastasis are poorly understood and this remains a major barrier to advancing TM to a randomized phase II trial. Here, using two independent TNBC models, we report a discrete subpopulation of highly metastatic SOX2/OCT4+ cells within primary tumors that exhibit elevated intracellular copper levels and a marked sensitivity to TM. Global proteomic and metabolomic profiling identifies TM-mediated inactivation of Complex IV as the primary metabolic defect in the SOX2/OCT4+ cell population. We also identify AMPK/mTORC1 energy sensor as an important downstream pathway and show that AMPK inhibition rescues TM-mediated loss of invasion. Furthermore, loss of the mitochondria-specific copper chaperone, COX17, restricts copper deficiency to mitochondria and phenocopies TM-mediated alterations. These findings identify a copper-metabolism-metastasis axis with potential to enrich patient populations in next-generation therapeutic trials.


Subject(s)
Copper/metabolism , Mitochondria/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Line, Tumor , Copper Transport Proteins/genetics , Copper Transport Proteins/metabolism , Female , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Neoplasm Metastasis , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oxidative Phosphorylation , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
10.
Nat Biomed Eng ; 4(7): 686-703, 2020 07.
Article in English | MEDLINE | ID: mdl-32661307

ABSTRACT

Theranostic agents should ideally be renally cleared and biodegradable. Here, we report the synthesis, characterization and theranostic applications of fluorescent ultrasmall gold quantum clusters that are stabilized by the milk metalloprotein alpha-lactalbumin. We synthesized three types of these nanoprobes that together display fluorescence across the visible and near-infrared spectra when excited at a single wavelength through optical colour coding. In live tumour-bearing mice, the near-infrared nanoprobe generates contrast for fluorescence, X-ray computed tomography and magnetic resonance imaging, and exhibits long circulation times, low accumulation in the reticuloendothelial system, sustained tumour retention, insignificant toxicity and renal clearance. An intravenously administrated near-infrared nanoprobe with a large Stokes shift facilitated the detection and image-guided resection of breast tumours in vivo using a smartphone with modified optics. Moreover, the partially unfolded structure of alpha-lactalbumin in the nanoprobe helps with the formation of an anti-cancer lipoprotein complex with oleic acid that triggers the inhibition of the MAPK and PI3K-AKT pathways, immunogenic cell death and the recruitment of infiltrating macrophages. The biodegradability and safety profile of the nanoprobes make them suitable for the systemic detection and localized treatment of cancer.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Gold/chemistry , Gold/pharmacology , Lactalbumin/chemistry , Lactalbumin/pharmacology , Animals , Apoptosis , Breast Neoplasms/pathology , Cell Death , Female , Heterografts , Lipoproteins , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/drug effects , Nanotechnology/methods , Optical Imaging , Phosphatidylinositol 3-Kinases/drug effects , Proteomics , Theranostic Nanomedicine/methods
11.
Cell ; 178(4): 807-819.e21, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398338

ABSTRACT

The NRF2 transcription factor controls a cell stress program that is implicated in cancer and there is great interest in targeting NRF2 for therapy. We show that NRF2 activity depends on Fructosamine-3-kinase (FN3K)-a kinase that triggers protein de-glycation. In its absence, NRF2 is extensively glycated, unstable, and defective at binding to small MAF proteins and transcriptional activation. Moreover, the development of hepatocellular carcinoma triggered by MYC and Keap1 inactivation depends on FN3K in vivo. N-acetyl cysteine treatment partially rescues the effects of FN3K loss on NRF2 driven tumor phenotypes indicating a key role for NRF2-mediated redox balance. Mass spectrometry reveals that other proteins undergo FN3K-sensitive glycation, including translation factors, heat shock proteins, and histones. How glycation affects their functions remains to be defined. In summary, our study reveals a surprising role for the glycation of cellular proteins and implicates FN3K as targetable modulator of NRF2 activity in cancer.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Female , Gene Knockdown Techniques , Glucose/metabolism , Glycosylation , HEK293 Cells , Hep G2 Cells , Heterografts , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transduction, Genetic
12.
Cell Chem Biol ; 26(6): 901-907.e6, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31006619

ABSTRACT

The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates. CHOPS exploits a 2-pyridinecarboxaldehyde (2PCA)-biotin probe, which selectively biotinylates protein N-termini except those with proline in the second position. CHOPS can, in theory, discover substrates for any protease, but is particularly well suited to discover canonical DPP substrates, as cleaved but not intact DPP substrates can be identified by gel electrophoresis or mass spectrometry. Using CHOPS, we show that DPP8 and DPP9, enzymes that control the Nlrp1 inflammasome through an unknown mechanism, do not directly cleave Nlrp1. We further show that DPP9 robustly cleaves short peptides but not full-length proteins. More generally, this work delineates a practical technology for identifying protease substrates, which we anticipate will complement available "N-terminomic" approaches.


Subject(s)
Peptide Hydrolases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Biotin/chemistry , Biotin/metabolism , Dipeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Humans , Inflammasomes/metabolism , Molecular Structure , NLR Proteins , Peptide Hydrolases/chemistry , Pyridines/chemistry , Pyridines/metabolism , Substrate Specificity
13.
Nature ; 568(7750): 112-116, 2019 04.
Article in English | MEDLINE | ID: mdl-30918399

ABSTRACT

Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence1. Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies1-3, and the results of early clinical trials suggest activity in multiple myeloma4. Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low1,2,4-9. Unlike the mechanisms that result in complete and permanent antigen loss6,8,9, those that lead to escape of antigen-low tumours remain unclear. Here, using mouse models of leukaemia, we show that CARs provoke reversible antigen loss through trogocytosis, an active process in which the target antigen is transferred to T cells, thereby decreasing target density on tumour cells and abating T cell activity by promoting fratricide T cell killing and T cell exhaustion. These mechanisms affect both CD28- and 4-1BB-based CARs, albeit differentially, depending on antigen density. These dynamic features can be offset by cooperative killing and combinatorial targeting to augment tumour responses to immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Leukemia/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape/immunology , 4-1BB Ligand/immunology , Animals , CD28 Antigens/immunology , Cytotoxicity, Immunologic , Female , Immunotherapy, Adoptive , Leukemia/pathology , Male , Mice , Mice, Inbred NOD , Neoplasm Recurrence, Local/immunology , T-Lymphocytes/cytology
14.
Nat Biotechnol ; 36(9): 847-856, 2018 10.
Article in English | MEDLINE | ID: mdl-30102295

ABSTRACT

The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv). These scFv-secreting CAR-T cells acted in both a paracrine and autocrine manner to improve the anti-tumor activity of CAR-T cells and bystander tumor-specific T cells in clinically relevant syngeneic and xenogeneic mouse models of PD-L1+ hematologic and solid tumors. The efficacy was similar to or better than that achieved by combination therapy with CAR-T cells and a checkpoint inhibitor. This approach may improve safety, as the secreted scFvs remained localized to the tumor, protecting CAR-T cells from PD-1 inhibition, which could potentially avoid toxicities associated with systemic checkpoint inhibition.


Subject(s)
Programmed Cell Death 1 Receptor/immunology , Receptors, Chimeric Antigen/immunology , Single-Chain Antibodies/immunology , T-Lymphocytes/immunology , Animals , Humans , Mice , Tumor Microenvironment , Xenograft Model Antitumor Assays
15.
J Biol Chem ; 292(33): 13507-13513, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28655768

ABSTRACT

Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O-acyl transferase family.


Subject(s)
Acyltransferases/metabolism , Focal Dermal Hypoplasia/genetics , Membrane Proteins/metabolism , Point Mutation , Protein Processing, Post-Translational , Wnt3A Protein/metabolism , Acylation/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Acyltransferases/genetics , Amino Acid Substitution , Animals , Cystine/chemistry , Cystine/metabolism , Enzyme Inhibitors/pharmacology , Focal Dermal Hypoplasia/metabolism , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Wnt Signaling Pathway/drug effects , Wnt3A Protein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...