Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
One Health ; 16: 100565, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363258

ABSTRACT

Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.

2.
One Health ; 16: 100490, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36817977

ABSTRACT

Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics. In recent years, next-generation sequencing as well as PCR and culture-based methods have been extensively used to identify mosquito-associated viruses, providing insights into virus ecology and evolution. Until now, the large amount of mosquito virome data, specifically those acquired by metagenomic sequencing, has not been comprehensively integrated. We have constructed a searchable database of insect-specific viruses associated with vector mosquitoes from 175 studies, published between October 2000 and February 2022. We identify the most frequently detected and widespread viruses of the Culex, Aedes and Anopheles mosquito genera and report their global distribution. In addition, we highlight the challenges of extracting and integrating published virome data and we propose that a standardized reporting format will facilitate data interpretation and re-use by other scientists. We expect our comprehensive database, summarizing mosquito virome data collected over 20 years, to be a useful resource for future studies.

3.
Trans R Soc Trop Med Hyg ; 117(6): 476-478, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36637101

ABSTRACT

BACKGROUND: Glass membrane feeders are used in malaria research for artificial blood feeding. This study investigates the use of Hemotek membrane feeders as a standardized alternative feeding system. METHODS: Hemotek feeders were compared with glass feeders by assessing mosquito feeding rate, imbibed blood meal volume and Plasmodium falciparum infection intensity on mosquito guts. RESULTS: While mosquito feeding rate and blood meal volume were comparable between Hemotek and glass feeders, a loss in transmission was observed using the Hemotek feeder with a conventional collagen membrane. There was no difference in transmission between both feeders when Parafilm was used as the membrane. CONCLUSIONS: Hemotek feeders with a Parafilm membrane can be used as an alternative feeding system for malaria transmission research.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Paraffin , Mosquito Vectors
4.
PLoS Pathog ; 18(11): e1010694, 2022 11.
Article in English | MEDLINE | ID: mdl-36441781

ABSTRACT

Aedes aegypti mosquitoes are responsible for the transmission of arthropod-borne (arbo)viruses including dengue and chikungunya virus (CHIKV) but in contrast to human hosts, arbovirus-infected mosquitoes are able to efficiently control virus replication to sub-pathological levels. Yet, our knowledge of the molecular interactions of arboviruses with their mosquito hosts is incomplete. Here, we aimed to identify and characterize novel host genes that control arbovirus replication in Aedes mosquitoes. RNA binding proteins (RBPs) are well-known to regulate immune signaling pathways in all kingdoms of life. We therefore performed a knockdown screen targeting 461 genes encoding predicted RBPs in Aedes aegypti Aag2 cells and identified 15 genes with antiviral activity against Sindbis virus. Amongst these, the three DEAD-box RNA helicases AAEL004419/Dhx15, AAEL008728, and AAEL004859 also acted as antiviral factors in dengue and CHIKV infections. Here, we explored the mechanism of Dhx15 in regulating an antiviral transcriptional response in mosquitoes by silencing Dhx15 in Aag2 cells followed by deep-sequencing of poly-A enriched RNAs. Dhx15 knockdown in uninfected and CHIKV-infected cells resulted in differential expression of 856 and 372 genes, respectively. Interestingly, amongst the consistently downregulated genes, glycolytic process was the most enriched gene ontology (GO) term as the expression of all core enzymes of the glycolytic pathway was reduced, suggesting that Dhx15 regulates glycolytic function. A decrease in lactate production indicated that Dhx15 silencing indeed functionally impaired glycolysis. Modified rates of glycolytic metabolism have been implicated in controlling the replication of several classes of viruses and strikingly, infection of Aag2 cells with CHIKV by itself also resulted in the decrease of several glycolytic genes. Our data suggests that Dhx15 regulates replication of CHIKV, and possibly other arboviruses, by controlling glycolysis in mosquito cells.


Subject(s)
Aedes , Humans , Animals , Aedes/genetics , Gene Ontology , DEAD-box RNA Helicases/genetics
5.
STAR Protoc ; 3(3): 101612, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35983169

ABSTRACT

We describe a protocol for single-cell RNA sequencing of SARS-CoV-2-infected human induced pluripotent stem cell (iPSC)-derived kidney organoids. After inoculation of kidney organoids with virus, we use mechanical and enzymatic disruption to obtain single cell suspensions. Next, we process the organoid-derived cells into sequencing-ready SARS-CoV-2-targeted libraries. Subsequent sequencing analysis reveals changes in kidney cells after virus infection. The protocol was designed for kidney organoids cultured in a 6-well transwell format but can be adapted to organoids with different organ backgrounds. For complete details on the use and execution of this protocol, please refer to Jansen et al. (2022).


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , Kidney , Organoids , SARS-CoV-2
6.
Methods Mol Biol ; 2509: 3-22, 2022.
Article in English | MEDLINE | ID: mdl-35796954

ABSTRACT

In insects, PIWI-interacting (pi)RNAs fulfill versatile regulatory functions inside and outside the germline, including posttranscriptional repression of transposable elements and regulation of gene expression. Canonically, piRNAs act-and have been studied-as a conglomerate of several thousand sequences that cooperatively silence target RNAs. Interestingly, however, an increasing number of studies have demonstrated that individual piRNAs can have profound biological activity as a unique piRNA sequence. Prime examples are the tapiR1 and 2 piRNAs, which mediate target RNA degradation in the developing embryo of Aedes mosquitoes. To study such outstanding individual piRNA species, we describe here a method to interfere with RNA target silencing using antisense oligonucleotides in cell culture as well as in mosquito pre-blastoderm embryos. Although the method has been established for Aedes mosquitoes, it can likely be adapted for use in other invertebrate species as well.


Subject(s)
Aedes , Aedes/genetics , Animals , DNA Transposable Elements , Oligonucleotides, Antisense , RNA Interference , RNA, Small Interfering/metabolism
7.
Antiviral Res ; 202: 105313, 2022 06.
Article in English | MEDLINE | ID: mdl-35367280

ABSTRACT

After decades of being considered non-pathogenic, Zika virus (ZIKV) emerged as an important threat to human health during the epidemic of 2015-2016. ZIKV infections are usually asymptomatic, but can cause Guillain-Barré syndrome in adults and microcephaly in newborns. As there are currently no approved antiviral drugs against ZIKV, we tested anti-ZIKV activity of compounds from the NIH Clinical Collection for which we previously showed antiviral activity against the related dengue virus. One of the top hits from the screen was lacidipine, a 1,4-dihydropyridine calcium antagonist that is approved as an antihypertensive drug. Our data show that lacidipine is antiviral against ZIKV (strain H/PF/2013) in both Vero cells and induced pluripotent stem cell (iPSC)-derived human neural progenitor cells with IC50 values of 3.0 µM and <50 nM, respectively. The antiviral effect was also observed against four other ZIKV strains from the African and Asian lineages. Time-of-addition and replicon assays indicated that lacidipine acts at the post-entry stage of the viral replication cycle, inhibiting viral genome replication. Lacidipine altered the subcellular distribution of free cholesterol and neutral lipids, suggesting that the antiviral effect of lacidipine is mediated by altered trafficking of lipids. Together, these results identify lacidipine as a novel inhibitor of ZIKV replication that likely disturbs trafficking of lipids needed for replication organelle formation.


Subject(s)
Calcium Channel Blockers , Dihydropyridines , Neural Stem Cells , Zika Virus Infection , Animals , Antiviral Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels , Chlorocebus aethiops , Dihydropyridines/pharmacology , Humans , Infant, Newborn , Lipids , Neural Stem Cells/drug effects , Neural Stem Cells/virology , Stem Cells , Vero Cells , Virus Replication , Zika Virus , Zika Virus Infection/drug therapy
8.
Cell Stem Cell ; 29(2): 217-231.e8, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35032430

ABSTRACT

Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/complications , Fibrosis , Humans , Kidney , Organoids/pathology , Post-Acute COVID-19 Syndrome
9.
RNA ; 27(10): 1155-1172, 2021 10.
Article in English | MEDLINE | ID: mdl-34210890

ABSTRACT

PIWI-interacting (pi)RNAs are small silencing RNAs that are crucial for the defense against transposable elements in germline tissues of animals. In Aedes aegypti mosquitoes, the piRNA pathway also contributes to gene regulation in somatic tissues, illustrating additional roles for piRNAs and PIWI proteins besides transposon repression. Here, we identify a highly abundant endogenous piRNA (propiR1) that associates with both Piwi4 and Piwi5. PropiR1-mediated target silencing requires base-pairing in the seed region with supplemental base-pairing at the piRNA 3' end. Yet, propiR1 represses a limited set of targets, among which is the lncRNA AAEL027353 (lnc027353). Slicing of lnc027353 initiates production of responder and trailer piRNAs from the cleavage fragment. Expression of propiR1 commences early during embryonic development and mediates degradation of maternally provided lnc027353 Both propiR1 and its lncRNA target are conserved in the closely related Aedes albopictus mosquito, underscoring the importance of this regulatory network for mosquito development.


Subject(s)
Aedes/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Gene Silencing , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Aedes/embryology , Aedes/metabolism , Animals , Base Pairing , Base Sequence , Conserved Sequence , Embryo, Nonmammalian , Gene Regulatory Networks , Insect Proteins/genetics , Insect Proteins/metabolism , RNA, Long Noncoding/metabolism
11.
Nucleic Acids Res ; 49(15): 8886-8899, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34331446

ABSTRACT

In the germline of animals, PIWI interacting (pi)RNAs protect the genome against the detrimental effects of transposon mobilization. In Drosophila, piRNA-mediated cleavage of transposon RNA triggers the production of responder piRNAs via ping-pong amplification. Responder piRNA 3' end formation by the nuclease Zucchini is coupled to the production of downstream trailer piRNAs, expanding the repertoire of transposon piRNA sequences. In Aedes aegypti mosquitoes, piRNAs are generated from viral RNA, yet, it is unknown how viral piRNA 3' ends are formed and whether viral RNA cleavage gives rise to trailer piRNA production. Here we report that in Ae. aegypti, virus- and transposon-derived piRNAs have sharp 3' ends, and are biased for downstream uridine residues, features reminiscent of Zucchini cleavage of precursor piRNAs in Drosophila. We designed a reporter system to study viral piRNA 3' end formation and found that targeting viral RNA by abundant endogenous piRNAs triggers the production of responder and trailer piRNAs. Using this reporter, we identified the Ae. aegypti orthologs of Zucchini and Nibbler, two nucleases involved in piRNA 3' end formation. Our results furthermore suggest that autonomous piRNA production from viral RNA can be triggered and expanded by an initial cleavage event guided by genome-encoded piRNAs.


Subject(s)
DNA Transposable Elements/genetics , Densovirinae/genetics , Drosophila Proteins/genetics , Endoribonucleases/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , Aedes/genetics , Aedes/virology , Animals , Argonaute Proteins/genetics , Densovirinae/pathogenicity , Drosophila melanogaster/genetics , Drosophila melanogaster/virology , Germ Cells/virology , RNA Cleavage/genetics
12.
Trends Parasitol ; 37(8): 687-689, 2021 08.
Article in English | MEDLINE | ID: mdl-34147336

ABSTRACT

Small RNAs are crucial for the regulation of basic cellular processes and protection against viruses and transposons in mosquitoes. Rozen-Gagnon et al. established CLIP (cross-linking and immunoprecipitation) for Argonaute proteins in Aedes aegypti. Their study sheds light on small RNA-target interactions in mosquitoes and provides an important resource for further study.


Subject(s)
Aedes , Aedes/genetics , Animals , RNA , RNA Interference
13.
Viruses ; 13(2)2021 02 11.
Article in English | MEDLINE | ID: mdl-33670363

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


Subject(s)
Antiviral Agents/pharmacology , Berberine/pharmacology , Indoles/pharmacology , Pyrroles/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Adolescent , Animals , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Epithelial Cells/virology , Humans , Male , RNA, Viral/genetics , SARS-CoV-2/physiology , Vero Cells
14.
Dev Comp Immunol ; 119: 104010, 2021 06.
Article in English | MEDLINE | ID: mdl-33476667

ABSTRACT

The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.


Subject(s)
Diptera/immunology , Genes, Insect/immunology , Immunity, Innate/immunology , Insect Viruses/immunology , Signal Transduction/immunology , Animals , Culicidae/genetics , Culicidae/immunology , Culicidae/virology , Diptera/genetics , Diptera/virology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Drosophila melanogaster/virology , Genes, Insect/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Insect Viruses/physiology , Mosquito Vectors/genetics , Mosquito Vectors/immunology , Mosquito Vectors/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Signal Transduction/genetics
15.
Mol Ecol ; 30(7): 1594-1611, 2021 04.
Article in English | MEDLINE | ID: mdl-33432714

ABSTRACT

Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.


Subject(s)
Aedes , Aedes/genetics , Animals , Genomics , Metagenomics , Mosquito Vectors/genetics , RNA, Small Interfering/genetics
16.
Genome Biol ; 21(1): 215, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32847630

ABSTRACT

BACKGROUND: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. RESULTS: We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. CONCLUSION: The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.


Subject(s)
Aedes/genetics , Arboviruses/genetics , Genome , Mosquito Vectors/genetics , Aedes/immunology , Aedes/virology , Animals , Chromosome Mapping , Chromosomes , Genome Size , Immunity , Insect Vectors , Mosquito Vectors/immunology , Mosquito Vectors/virology , RNA, Small Interfering/genetics , Transcriptome
17.
Curr Biol ; 30(18): 3495-3506.e6, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32679098

ABSTRACT

Endogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-retroviral EVEs was recently detected in Aedes mosquito genomes, leading to the hypothesis that mosquito EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific virus, cell-fusing agent virus (CFAV). Using CRISPR-Cas9 genome editing, we created an Ae. aegypti line lacking the CFAV EVE. Absence of the EVE resulted in increased CFAV replication in ovaries, possibly modulating vertical transmission of the virus. Viral replication was controlled by targeting of viral RNA by EVE-derived P-element-induced wimpy testis-interacting RNAs (piRNAs). Our results provide evidence that antiviral piRNAs are produced in the presence of a naturally occurring EVE and its cognate virus, demonstrating a functional link between non-retroviral EVEs and antiviral immunity in a natural insect-virus interaction.


Subject(s)
Aedes/genetics , Aedes/virology , Flavivirus/genetics , Genome, Insect , RNA, Small Interfering/genetics , Virus Replication , Animals , Female , Flavivirus/classification , Flavivirus/isolation & purification , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
18.
Adv Virus Res ; 107: 1-36, 2020.
Article in English | MEDLINE | ID: mdl-32711727

ABSTRACT

The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.


Subject(s)
Plant Viruses , Plants , RNA, Small Interfering , Animals , Host-Pathogen Interactions/genetics , Insecta , Plant Diseases/virology , Plant Viruses/genetics , Plants/virology , RNA Interference , RNA, Small Interfering/genetics
19.
Nature ; 580(7802): 274-277, 2020 04.
Article in English | MEDLINE | ID: mdl-32269344

ABSTRACT

Tandem repeat elements such as the diverse class of satellite repeats occupy large parts of eukaryotic chromosomes, mostly at centromeric, pericentromeric, telomeric and subtelomeric regions1. However, some elements are located in euchromatic regions throughout the genome and have been hypothesized to regulate gene expression in cis by modulating local chromatin structure, or in trans via transcripts derived from the repeats2-4. Here we show that a satellite repeat in the mosquito Aedes aegypti promotes sequence-specific gene silencing via the expression of two PIWI-interacting RNAs (piRNAs). Whereas satellite repeats and piRNA sequences generally evolve extremely quickly5-7, this locus was conserved for approximately 200 million years, suggesting that it has a central function in mosquito biology. piRNA production commenced shortly after egg laying, and inactivation of the more abundant piRNA resulted in failure to degrade maternally deposited transcripts in the zygote and developmental arrest. Our results reveal a mechanism by which satellite repeats regulate global gene expression in trans via piRNA-mediated gene silencing that is essential for embryonic development.


Subject(s)
Aedes/embryology , Aedes/genetics , DNA, Satellite/genetics , RNA, Small Interfering/genetics , Animals , Base Sequence , Female , Gene Silencing
20.
Proc Natl Acad Sci U S A ; 116(48): 24296-24302, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31712431

ABSTRACT

Coevolution of viruses and their hosts may lead to viral strategies to avoid, evade, or suppress antiviral immunity. An example is antiviral RNA interference (RNAi) in insects: the host RNAi machinery processes viral double-stranded RNA into small interfering RNAs (siRNAs) to suppress viral replication, whereas insect viruses encode suppressors of RNAi, many of which inhibit viral small interfering RNA (vsiRNA) production. Yet, many studies have analyzed viral RNAi suppressors in heterologous systems, due to the lack of experimental systems to manipulate the viral genome of interest, raising questions about in vivo functions of RNAi suppressors. To address this caveat, we generated an RNAi suppressor-defective mutant of invertebrate iridescent virus 6 (IIV6), a large DNA virus in which we previously identified the 340R protein as a suppressor of RNAi. Loss of 340R did not affect vsiRNA production, indicating that 340R binds siRNA duplexes to prevent RNA-induced silencing complex assembly. Indeed, vsiRNAs were not efficiently loaded into Argonaute 2 during wild-type IIV6 infection. Moreover, IIV6 induced a limited set of mature microRNAs in a 340R-dependent manner, most notably miR-305-3p, which we attribute to stabilization of the miR-305-5p:3p duplex by 340R. The IIV6 340R deletion mutant did not have a replication defect in cells, but was strongly attenuated in adult Drosophila This in vivo replication defect was completely rescued in RNAi mutant flies, indicating that 340R is a bona fide RNAi suppressor, the absence of which uncovers a potent antiviral immune response that suppresses virus accumulation ∼100-fold. Together, our work indicates that viral RNAi suppressors may completely mask antiviral immunity.


Subject(s)
Drosophila/genetics , Drosophila/virology , Host-Pathogen Interactions/immunology , Iridovirus/physiology , Iridovirus/pathogenicity , Animals , Drosophila/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , Microorganisms, Genetically-Modified , Mutation , RNA Interference , RNA Stability , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...