Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Clin Cancer Res ; 29(17): 3329-3339, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37398992

ABSTRACT

PURPOSE: Antibodies against insulin-like growth factor (IGF) type 1 receptor have shown meaningful but transient tumor responses in patients with rhabdomyosarcoma (RMS). The SRC family member YES has been shown to mediate IGF type 1 receptor (IGF-1R) antibody acquired resistance, and cotargeting IGF-1R and YES resulted in sustained responses in murine RMS models. We conducted a phase I trial of the anti-IGF-1R antibody ganitumab combined with dasatinib, a multi-kinase inhibitor targeting YES, in patients with RMS (NCT03041701). PATIENTS AND METHODS: Patients with relapsed/refractory alveolar or embryonal RMS and measurable disease were eligible. All patients received ganitumab 18 mg/kg intravenously every 2 weeks. Dasatinib dose was 60 mg/m2/dose (max 100 mg) oral once daily [dose level (DL)1] or 60 mg/m2/dose (max 70 mg) twice daily (DL2). A 3+3 dose escalation design was used, and maximum tolerated dose (MTD) was determined on the basis of cycle 1 dose-limiting toxicities (DLT). RESULTS: Thirteen eligible patients, median age 18 years (range 8-29) enrolled. Median number of prior systemic therapies was 3; all had received prior radiation. Of 11 toxicity-evaluable patients, 1/6 had a DLT at DL1 (diarrhea) and 2/5 had a DLT at DL2 (pneumonitis, hematuria) confirming DL1 as MTD. Of nine response-evaluable patients, one had a confirmed partial response for four cycles, and one had stable disease for six cycles. Genomic studies from cell-free DNA correlated with disease response. CONCLUSIONS: The combination of dasatinib 60 mg/m2/dose daily and ganitumab 18 mg/kg every 2 weeks was safe and tolerable. This combination had a disease control rate of 22% at 5 months.


Subject(s)
Rhabdomyosarcoma , src-Family Kinases , Humans , Animals , Mice , Child , Adolescent , Young Adult , Adult , Dasatinib/adverse effects , Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Maximum Tolerated Dose
2.
Front Oncol ; 12: 1012058, 2022.
Article in English | MEDLINE | ID: mdl-36338744

ABSTRACT

Background: Chordoma is a rare, invasive, and devastating bone malignancy of residual notochord tissue that arises at the skull base, sacrum, or spine. In order to maximize immunotherapeutic approaches as a potential treatment strategy in chordoma it is important to fully characterize the tumor immune microenvironment (TIME). Multispectral immunofluorescence (MIF) allows for comprehensive evaluation of tumor compartments, molecular co-expression, and immune cell spatial relationships. Here we implement MIF to define the myeloid, T cell, and natural killer (NK) cell compartments in an effort to guide rational design of immunotherapeutic strategies for chordoma. Methods: Chordoma tumor tissue from 57 patients was evaluated using MIF. Three panels were validated to assess myeloid cell, T cell, and NK cell populations. Slides were stained using an automated system and HALO software objective analysis was utilized for quantitative immune cell density and spatial comparisons between tumor and stroma compartments. Results: Chordoma TIME analysis revealed macrophage infiltration of the tumor parenchyma at a significantly higher density than stroma. In contrast, helper T cells, cytotoxic T cells, and T regulatory cells were significantly more abundant in stroma versus tumor. T cell compartment infiltration more commonly demonstrated a tumor parenchymal exclusion pattern, most markedly among cytotoxic T cells. NK cells were sparsely found within the chordoma TIME and few were in an activated state. No immune composition differences were seen in chordomas originating from diverse anatomic sites or between those resected at primary versus advanced disease stage. Conclusion: This is the first comprehensive evaluation of the chordoma TIME including myeloid, T cell, and NK cell appraisal using MIF. Our findings demonstrate that myeloid cells significantly infiltrate chordoma tumor parenchyma while T cells tend to be tumor parenchymal excluded with high stromal infiltration. On average, myeloid cells are found nearer to target tumor cells than T cells, potentially resulting in restriction of T effector cell function. This study suggests that future immunotherapy combinations for chordoma should be aimed at decreasing myeloid cell suppressive function while enhancing cytotoxic T cell and NK cell killing.

3.
J Thorac Oncol ; 17(1): 141-153, 2022 01.
Article in English | MEDLINE | ID: mdl-34534680

ABSTRACT

INTRODUCTION: A new molecular subtype classification was recently proposed for SCLC. It is necessary to validate it in primary SCLC tumors by immunohistochemical (IHC) staining and define its clinical relevance. METHODS: We used IHC to assess four subtype markers (ASCL1, NEUROD1, POU2F3, and YAP1) in 194 cores from 146 primary SCLC tumors. The profiles of tumor-associated CD3+ and CD8+ T-cells, MYC paralogs, SLFN11, and SYP were compared among different subtypes. Validation was performed using publicly available RNA sequencing data of SCLC. RESULTS: ASCL1, NEUROD1, POU2F3, and YAP1 were the dominant molecular subtypes in 78.2%, 5.6%, 7%, and 2.8% of the tumors, respectively; 6.3% of the tumors were negative for all four subtype markers. Notably, three cases were uniquely positive for YAP1. Substantial intratumoral heterogeneity was observed, with 17.6% and 2.8% of the tumors being positive for two and three subtype markers, respectively. The non-ASCL1/NEUROD1 tumors had more CD8+ T-cells and manifested more frequently an "inflamed" immunophenotype. L-MYC and MYC were more often associated with ASCL1/NEUROD1 subtypes and non-ASCL1/NEUROD1 subtypes, respectively. SLFN11 expression was absent in 40% of the tumors, especially those negative for the four subtype markers. SYP was often expressed in the ASCL1 and NEUROD1 subtypes and was associated with less tumor-associated CD8+ T-cells and a "desert" immunophenotype. CONCLUSIONS: We validated the new molecular subtype classification in primary SCLC tumors by IHC and identified several intriguing associations between subtypes and therapeutic markers. The new subtype classification may potentially assist treatment decisions in SCLC.


Subject(s)
Lung Neoplasms , Neuroendocrine Tumors , Small Cell Lung Carcinoma , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Neuroendocrine Tumors/genetics , Nuclear Proteins , Octamer Transcription Factors , Small Cell Lung Carcinoma/genetics , Synaptophysin , YAP-Signaling Proteins
4.
Front Oncol ; 11: 789078, 2021.
Article in English | MEDLINE | ID: mdl-34976830

ABSTRACT

BACKGROUND: Despite recent advances, there is an urgent need for agents targeting HER2-expressing cancers other than breast cancer. We report a phase I study (NCT01730118) of a dendritic cell (DC) vaccine targeting HER2 in patients with metastatic cancer or bladder cancer at high risk of relapse. PATIENTS AND METHODS: Part 1 of the study enrolled patients with HER2-expressing metastatic cancer that had progressed after at least standard treatment and patients who underwent definitive treatment for invasive bladder cancer with no evidence of disease at the time of enrollment. Part 2 enrolled patients with HER2-expressing metastatic cancer who had progressed after anti-HER2 therapy. The DC vaccines were prepared from autologous monocytes and transduced with an adenoviral vector expressing the extracellular and transmembrane domains of HER2 (AdHER2). A total of five doses were planned, and adverse events were recorded in patients who received at least one dose. Objective response was evaluated by unidimensional immune-related response criteria every 8 weeks in patients who received at least two doses. Humoral and cellular immunogenicity were assessed in patients who received more than three doses. RESULTS: A total of 33 patients were enrolled at four dose levels (5 × 106, 10 × 106, 20 × 106, and 40 × 106 DCs). Median follow-up duration was 36 weeks (4-124); 10 patients completed five doses. The main reason for going off-study was disease progression. The main adverse events attributable to the vaccine were injection-site reactions. No cardiac toxicity was noted. Seven of 21 evaluable patients (33.3%) demonstrated clinical benefit (1 complete response, 1 partial response, and 5 stable disease). After ≥3 doses, an antibody response was detected in 3 of 13 patients (23.1%), including patients with complete and partial responses. Lymphocytes from 10 of 11 patients (90.9%) showed induction of anti-HER2 responses measured by the production of at least one of interferon-gamma, granzyme B, or tumor necrosis factor-alpha, and there were multifunctional responses in 8 of 11 patients (72.7%). CONCLUSIONS: The AdHER2 DC vaccine showed evidence of immunogenicity and preliminary clinical benefit in patients with HER2-expressing cancers, along with an excellent safety profile. It shows promise for further clinical applications, especially in combination regimens.

5.
Neurol Genet ; 6(3): e414, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32337341

ABSTRACT

OBJECTIVE: To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia. METHODS: Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations. RESULTS: All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations-one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse. CONCLUSIONS: This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition.

6.
J Neurosurg ; : 1-11, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31653805

ABSTRACT

OBJECTIVE: Patients with neurofibromatosis type 1 (NF1) are predisposed to visceral neurofibromas, some of which can progress to premalignant atypical neurofibromas (ANFs) and malignant peripheral nerve sheath tumors (MPNSTs). Though subtotal resection of ANF may prevent malignant transformation and thus deaths with no neural complications, local recurrences require reoperation. The aim of this study was to assess the surgical morbidity associated with marginal resection of targeted ANF nodules identified via preoperative serial volumetric MRI and 18F-FDG-PET imaging. METHODS: The authors analyzed clinical outcomes of 16 NF resections of 21 tumors in 11 NF1 patients treated at the NIH Clinical Center between 2008 and 2018. Preoperative volumetric growth rates and 18F-FDG-PET SUVMax (maximum standardized uptake value within the tumor) of the target lesions and any electromyographic or nerve conduction velocity abnormalities of the parent nerves were measured and assessed in tandem with postoperative complications, histopathological classification of the resected tumors, and surgical margins through Dunnett's multiple comparisons test and t-test. The surgical approach for safe marginal resection of ANF was also described. RESULTS: Eleven consecutive NF1 patients (4 male, 7 female; median age 18.5 years) underwent 16 surgical procedures for marginal resections of 21 tumors. Preoperatively, 13 of the 14 (93%) sets of serial MRI studies and 10 of the 11 (91%) 18F-FDG-PET scans showed rapid growth (≥ 20% increase in volume per year) and avidity (SUVMax ≥ 3.5) of the identified tumor, respectively (median tumor size 48.7 cm3; median growth rate 92% per year; median SUVMax 6.45). Most surgeries (n = 14, 88%) resulted in no persistent postoperative parent nerve-related complications, and to date, none of the resected tumors have recurred. The median length of postoperative follow-up has been 2.45 years (range 0.00-10.39 years). Histopathological analysis confirmed significantly greater SUVMax among the ANFs (6.51 ± 0.83, p = 0.0042) and low-grade MPNSTs (13.8, p = 0.0001) than in benign neurofibromas (1.9). CONCLUSIONS: This report evaluates the utility of serial imaging (MRI and 18F-FDG-PET SUVMax) to successfully detect ANF and demonstrates that safe, fascicle-sparing gross-total, extracapsular resection of ANF is possible with the use of intraoperative nerve stimulation and microdissection of nerve fascicles.

7.
J Transl Med ; 17(1): 246, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31362756

ABSTRACT

BACKGROUND: Plexiform fibromyxoma (PF) is a rare gastric tumor often confused with gastrointestinal stromal tumor. These so-called "benign" tumors often present with upper GI bleeding and gastric outlet obstruction. It was recently demonstrated that approximately one-third of PF have activation of the GLI1 oncogene, a transcription factor in the hedgehog (Hh) pathway, via a MALAT1-GLI1 fusion protein or GLI1 up-regulation. Despite this discovery, the biology of most PFs remains unknown. METHODS: Next generation sequencing (NGS) was performed on formalin-fixed paraffin-embedded (FFPE) samples of PF specimens collected from three institutions (UCSD, NCI and OHSU). Fresh frozen tissue from one tumor was utilized for in vitro assays, including quantitative RT-PCR and cell viability assays following drug treatment. RESULTS: Eight patients with PF were identified and 5 patients' tumors were analyzed by NGS. An index case had a mono-allelic PTCH1 deletion of exons 15-24 and a second case, identified in a validation cohort, also had a PTCH1 gene loss associated with a suspected long-range chromosome 9 deletion. Building on the role of Hh signaling in PF, PTCH1, a tumor suppressor protein, functions upstream of GLI1. Loss of PTCH1 induces GLI1 activation and downstream gene transcription. Utilizing fresh tissue from the index PF case, RT-qPCR analysis demonstrated expression of Hh pathway components, SMO and GLI1, as well as GLI1 transcriptional targets, CCND1 and HHIP. In turn, short-term in vitro treatment with a Hh pathway inhibitor, sonidegib, resulted in dose-dependent cell killing. CONCLUSIONS: For the first time, we report a novel association between PTCH1 inactivation and the development of plexiform fibromyxoma. Hh pathway inhibition with SMO antagonists may represent a target to study for treating a subset of plexiform fibromyxomas.


Subject(s)
Fibroma/genetics , Genes, Tumor Suppressor , Patched-1 Receptor/genetics , RNA, Long Noncoding/genetics , Adolescent , Adult , Aged , Carrier Proteins/genetics , Chromosome Deletion , Cyclin D1/genetics , Exons , Female , Hedgehog Proteins/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Membrane Glycoproteins/genetics , Middle Aged , Retrospective Studies , Smoothened Receptor/genetics , Young Adult , Zinc Finger Protein GLI1/genetics
8.
J Med Genet ; 56(6): 370-379, 2019 06.
Article in English | MEDLINE | ID: mdl-30745422

ABSTRACT

INTRODUCTION: Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome associated with variants in E-cadherin (CDH1), diffuse gastric cancer and lobular breast cancer. There is considerable heterogeneity in its clinical manifestations. This study aimed to determine associations between CDH1 germline variant status and clinical phenotypes of HDGC. METHODS: One hundred and fifty-two HDGC families, including six previously unreported families, were identified. CDH1 gene-specific guidelines released by the Clinical Genome Resource (ClinGen) CDH1 Variant Curation Expert Panel were applied for pathogenicity classification of truncating, missense and splice site CDH1 germline variants. We evaluated ORs between location of truncating variants of CDH1 and incidence of colorectal cancer, breast cancer and cancer at young age (gastric cancer at <40 or breast cancer <50 years of age). RESULTS: Frequency of truncating germline CDH1 variants varied across functional domains of the E-cadherin receptor gene and was highest in linker (0.05785 counts/base pair; p=0.0111) and PRE regions (0.10000; p=0.0059). Families with truncating CDH1 germline variants located in the PRE-PRO region were six times more likely to have family members affected by colorectal cancer (OR 6.20, 95% CI 1.79 to 21.48; p=0.004) compared with germline variants in other regions. Variants in the intracellular E-cadherin region were protective for cancer at young age (OR 0.2, 95% CI 0.06 to 0.64; p=0.0071) and in the linker regions for breast cancer (OR 0.35, 95% CI 0.12 to 0.99; p=0.0493). Different CDH1 genotypes were associated with different intracellular signalling activation levels including different p-ERK, p-mTOR and ß-catenin levels in early submucosal T1a lesions of HDGC families with different CDH1 variants. CONCLUSION: Type and location of CDH1 germline variants may help to identify families at increased risk for concomitant cancers that might benefit from individualised surveillance and intervention strategies.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Germ-Line Mutation , Phenotype , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Alleles , Alternative Splicing , Antigens, CD/chemistry , Antigens, CD/metabolism , Cadherins/chemistry , Cadherins/metabolism , Exons , Family , Humans , Immunohistochemistry , Mutation, Missense , Odds Ratio , Pedigree , Signal Transduction , Stomach Neoplasms/metabolism
9.
Neuro Oncol ; 21(8): 981-992, 2019 08 05.
Article in English | MEDLINE | ID: mdl-30722027

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) is a tumor-predisposition disorder caused by germline mutations in NF1. NF1 patients have an 8-16% lifetime risk of developing a malignant peripheral nerve sheath tumor (MPNST), a highly aggressive soft-tissue sarcoma, often arising from preexisting benign plexiform neurofibromas (PNs) and atypical neurofibromas (ANFs). ANFs are distinct from both PN and MPNST, representing an intermediate step in malignant transformation. METHODS: In the first comprehensive genomic analysis of ANF originating from multiple patients, we performed tumor/normal whole-exome sequencing (WES) of 16 ANFs. In addition, we conducted WES of 3 MPNSTs, copy-number meta-analysis of 26 ANFs and 28 MPNSTs, and whole transcriptome sequencing analysis of 5 ANFs and 5 MPNSTs. RESULTS: We identified a low number of mutations (median 1, range 0-5) in the exomes of ANFs (only NF1 somatic mutations were recurrent), and frequent deletions of CDKN2A/B (69%) and SMARCA2 (42%). We determined that polycomb repressor complex 2 (PRC2) genes EED and SUZ12 were frequently mutated, deleted, or downregulated in MPNSTs but not in ANFs. Our pilot gene expression study revealed upregulated NRAS, MDM2, CCND1/2/3, and CDK4/6 in ANFs and MPNSTs, and overexpression of EZH2 in MPNSTs only. CONCLUSIONS: The PN-ANF transition is primarily driven by the deletion of CDKN2A/B. Further progression from ANF to MPNST likely involves broad chromosomal rearrangements and frequent inactivation of the PRC2 genes, loss of the DNA repair genes, and copy-number increase of signal transduction and cell-cycle and pluripotency self-renewal genes.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Neurofibrosarcoma , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Humans , Mutation/genetics , Neurofibromatosis 1/genetics , Transcription Factors
10.
Mod Pathol ; 32(6): 764-773, 2019 06.
Article in English | MEDLINE | ID: mdl-30723300

ABSTRACT

Poorly differentiated neoplasms lacking characteristic histopathologic features represent a significant challenge to the pathologist for diagnostic classification. Classically, NUT carcinoma (previously NUT midline carcinoma) is poorly differentiated but typically exhibits variable degrees of squamous differentiation. Diagnosis is genetically defined by NUTM1 rearrangement, usually with BRD4 as the fusion partner. In this multi-institutional next-generation sequencing and fluorescence in situ hybridization study, 26 new NUTM1-rearranged neoplasms are reported, including 20 NUT carcinomas, 4 sarcomas, and 2 tumors of an uncertain lineage. NUTM1 fusion partners were available in 24 of 26 cases. BRD4 was the fusion partner in 18/24 (75%) cases, NSD3 in 2/24 cases (8.3%), and BRD3 in 1/24 (4.2%) cases. Two novel fusion partners were identified: MGA in two sarcomas (myxoid spindle cell sarcoma and undifferentiated sarcoma) (2/24 cases 8.3%) and MXD4 in a round cell sarcoma in the cecum (1/24 cases 4.2%). Eleven cases tested for NUT immunoexpression were all positive, including the MGA and MXD4-rearranged tumors. Our results confirm that NUTM1 gene rearrangements are found outside the classic clinicopathological setting of NUT carcinoma. In addition, as novel fusion partners like MGA and MXD4 may not be susceptible to targeted therapy with bromodomain inhibitors, detecting the NUTM1 rearrangement may not be enough, and identifying the specific fusion partner may become necessary. Studies to elucidate the mechanism of tumorigenesis of novel fusion partners are needed.


Subject(s)
Carcinoma/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Sarcoma/genetics , Adolescent , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Oncogene Fusion
11.
J Natl Cancer Inst ; 109(8)2017 08 01.
Article in English | MEDLINE | ID: mdl-29117388

ABSTRACT

Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma for which the only effective therapy is surgery. In 2016, an international meeting entitled "MPNST State of the Science: Outlining a Research Agenda for the Future" was convened to establish short- and long-term research priorities. Key recommendations included the: 1) development of standardized, cost-efficient fluorodeoxyglucose positron emission tomography and whole-body magnetic resonance imaging guidelines to evaluate masses concerning for MPNST; 2) development of better understanding and histologic criteria for the transformation of a plexiform neurofibroma to MPNST; 3) establishment of a centralized database to collect genetic, genomic, histologic, immunohistochemical, molecular, radiographic, treatment, and related clinical data from MPNST subspecialty centers in a standardized manner; 4) creation of accurate mouse models to study the plexiform neurofibroma-to-MPNST transition, MPNST metastasis, and drug resistance; 5) use of trial designs that minimize regulatory requirements, maximize availability to patients, consider novel secondary end points, and study patients with newly diagnosed disease. Lastly, in order to minimize delays in developing novel therapies and promote the most efficient use of research resources and patient samples, data sharing should be incentivized.


Subject(s)
Biomedical Research/trends , Nerve Sheath Neoplasms/therapy , Neurilemmoma/therapy , Neurofibromatosis 1/therapy , Therapies, Investigational/trends , Consensus , Humans , Nerve Sheath Neoplasms/complications , Nerve Sheath Neoplasms/diagnosis , Neurilemmoma/complications , Neurilemmoma/diagnosis , Neurofibromatosis 1/complications , Neurofibromatosis 1/diagnosis , Practice Guidelines as Topic/standards , Therapies, Investigational/methods
12.
Nat Med ; 23(10): 1176-1190, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28920957

ABSTRACT

A deeper understanding of the metastatic process is required for the development of new therapies that improve patient survival. Metastatic tumor cell growth and survival in distant organs is facilitated by the formation of a pre-metastatic niche that is composed of hematopoietic cells, stromal cells and extracellular matrix (ECM). Perivascular cells, including vascular smooth muscle cells (vSMCs) and pericytes, are involved in new vessel formation and in promoting stem cell maintenance and proliferation. Given the well-described plasticity of perivascular cells, we hypothesized that perivascular cells similarly regulate tumor cell fate at metastatic sites. We used perivascular-cell-specific and pericyte-specific lineage-tracing models to trace the fate of perivascular cells in the pre-metastatic and metastatic microenvironments. We show that perivascular cells lose the expression of traditional vSMC and pericyte markers in response to tumor-secreted factors and exhibit increased proliferation, migration and ECM synthesis. Increased expression of the pluripotency gene Klf4 in these phenotypically switched perivascular cells promoted a less differentiated state, characterized by enhanced ECM production, that established a pro-metastatic fibronectin-rich environment. Genetic inactivation of Klf4 in perivascular cells decreased formation of a pre-metastatic niche and metastasis. Our data revealed a previously unidentified role for perivascular cells in pre-metastatic niche formation and uncovered novel strategies for limiting metastasis.


Subject(s)
Cell Plasticity/genetics , Kruppel-Like Transcription Factors/genetics , Myocytes, Smooth Muscle/metabolism , Neoplasm Metastasis/genetics , Pericytes/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , In Vitro Techniques , Kruppel-Like Factor 4 , Melanoma, Experimental , Mice , Muscle, Smooth, Vascular/cytology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Real-Time Polymerase Chain Reaction , Tumor Microenvironment
13.
J Clin Endocrinol Metab ; 102(11): 3990-4000, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28938401

ABSTRACT

Context: No effective methods for separating primary pheochromocytomas and paragangliomas with metastatic potential are currently available. The identification of specific asparagine-linked glycan (N-glycan) structures, which are associated with metastasized pheochromocytomas and paragangliomas, may serve as a diagnostic tool. Objective: To identify differences in N-glycomic profiles of primary metastasized and nonmetastasized pheochromocytomas and paragangliomas. Setting: This study was conducted at Helsinki University Hospital, University of Helsinki, and Glykos Finland Ltd. and included 16 pheochromocytomas and paragangliomas: 8 primary metastasized pheochromocytomas or paragangliomas and 8 nonmetastasized tumors. Methods: N-glycan structures were analyzed with matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) profiling of formalin-fixed, paraffin-embedded tissue samples. Main Outcome Measure: N-glycan profile of tumor tissue. Results: Four groups of neutral N-glycan signals were more abundant in metastasized tumors than in nonmetastasized tumors: complex-type N-glycan signals of cancer-associated terminal N-acetylglucosamine, multifucosylated glycans (complex fucosylation), hybrid-type N-glycans, and fucosylated pauci-mannose-type N-glycans. Three groups of acidic N-glycans were more abundant in metastasized tumors: multifucosylated glycans, acid ester-modified (sulfated or phosphorylated) glycans, and hybrid-type/monoantennary N-glycans. Fucosylation and complex fucosylation were significantly more abundant in metastasized paragangliomas and pheochromocytomas than in nonmetastasized tumors for individual tests but were over the false positivity critical rate, when adjusted for multiplicity testing. Conclusions: MALDI-TOF MS profiling of primary pheochromocytomas and paragangliomas can identify diseases with metastatic potential based on their different N-glycan profiles. Thus, malignancy-linked N-glycan structures may serve as potential diagnostic tools for pheochromocytomas and paragangliomas.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Glycomics , Neoplasm Staging/methods , Paraganglioma/metabolism , Pheochromocytoma/metabolism , Polysaccharides/metabolism , Adrenal Gland Neoplasms/diagnosis , Adrenal Gland Neoplasms/pathology , Adult , Aged , Diagnosis, Differential , Female , Glycosylation , Humans , Male , Middle Aged , Neoplasm Metastasis , Paraganglioma/diagnosis , Paraganglioma/pathology , Pheochromocytoma/diagnosis , Pheochromocytoma/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult
14.
Cancer Res ; 77(22): 6267-6281, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28935813

ABSTRACT

In this study, we generated induced pluripotent stem cells (iPSC) from normal human small airway epithelial cells (SAEC) to investigate epigenetic mechanisms of stemness and pluripotency in lung cancers. We documented key hallmarks of reprogramming in lung iPSCs (Lu-iPSC) that coincided with modulation of more than 15,000 genes relative to parental SAECs. Of particular novelty, we identified the PRC2-associated protein, ASXL3, which was markedly upregulated in Lu-iPSCs and small cell lung cancer (SCLC) lines and clinical specimens. ASXL3 overexpression correlated with increased genomic copy number in SCLC lines. ASXL3 silencing inhibited proliferation, clonogenicity, and teratoma formation by Lu-iPSCs, and diminished clonogenicity and malignant growth of SCLC cells in vivo Collectively, our studies validate the utility of the Lu-iPSC model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and highlight ASXL3 as a novel candidate target for SCLC therapy. Cancer Res; 77(22); 6267-81. ©2017 AACR.


Subject(s)
Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Transcription Factors/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Cellular Reprogramming , Epigenesis, Genetic , Gene Expression Profiling/methods , Humans , Induced Pluripotent Stem Cells/transplantation , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Respiratory Mucosa/cytology , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Teratoma/genetics , Teratoma/metabolism , Transcription Factors/metabolism , Transplantation, Heterologous
15.
BMC Cancer ; 17(1): 495, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28732488

ABSTRACT

BACKGROUND: Despite the near universal occurrence of activating codon 12 KRAS somatic variants in pancreatic cancer, there is considerable heterogeneity in the molecular make-up, MAPK/ERK pathway activation states, and clinical outcome in this disease. We analyzed the expression levels of CNKSR1, a scaffold that influences MAPK/ERK pathway activity, in clinical pancreas cancer specimens and their impact on survival of patients with pancreatic cancer. METHODS: Immunohistochemical staining for CNKSR1 expression was performed on 120 specimens from three independent pancreatic cancer tissue registries, phospho-ERK levels were measured in 86 samples. Expression was divided into CNKSR1 low and CNKSR1 high and correlated with clinicopathological variables including overall survival using multivariate Cox proportional hazard ratio models. RESULTS: CNKSR1 expression was increased in tumors compared to matched normal uninvolved resection specimens (p = 0.004). 28.3% (34/120) of patient specimens stained as CNKSR1 low compared to 71.7% (86/120) of specimens which stained as CNKSR1 high. High CNKSR1 expression was more prevalent in low grade tumors (p = 0.04). In multivariate analysis, low CNKSR1 expression status was independently correlated with decreased overall survival (HR = 2.146; 95% CI 1.34 to 3.43). When stratifying primary, non-metastatic tumor biopsies by CNKSR1 expression, resection was associated with improved survival in patients with high CNKSR1 expression (p < 0.0001) but not low CNKSR1 expression (p = 0.3666). Pancreatic tumors with nuclear in addition to cytoplasmic CNKSR1 staining (32/107) showed increased nuclear phospho-ERK expression compared to tumor with cytoplasmic CNKSR1 staining only (p = 0.017). CONCLUSION: CNKSR1 expression is increased in pancreatic tissue specimens and was found to be an independent prognostic marker of overall survival. CNKSR1 may help to identify patient subgroups with unfavorable tumor biology in order to improve risk stratification and treatment selection. Cellular distribution of CNKSR1 was correlated with nuclear pERK expression.


Subject(s)
Adenocarcinoma/metabolism , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Pancreatic Neoplasms/metabolism , Adenocarcinoma/diagnosis , Aged , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/diagnosis , Prognosis , Proportional Hazards Models
16.
Sarcoma ; 2017: 7429697, 2017.
Article in English | MEDLINE | ID: mdl-28592921

ABSTRACT

Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST.

17.
Radiographics ; 37(3): 797-812, 2017.
Article in English | MEDLINE | ID: mdl-28493803

ABSTRACT

Soft-tissue sarcomas occurring in the abdomen and pelvis are an uncommon but important group of malignancies. Recent changes to the World Health Organization classification of soft-tissue tumors include the movement of gastrointestinal stromal tumors (GISTs) into the soft-tissue tumor classification. GIST is the most common intraperitoneal sarcoma. Liposarcoma is the most common retroperitoneal sarcoma, and leiomyosarcoma is the second most common. GIST, liposarcoma, and leiomyosarcoma account for the majority of sarcomas encountered in the abdomen and pelvis and are discussed in part 1 of this article. Undifferentiated pleomorphic sarcoma (previously called malignant fibrous histiocytoma), dermatofibrosarcoma protuberans, solitary fibrous tumor, malignant peripheral nerve sheath tumor, rhabdomyosarcoma, extraskeletal chondro-osseous sarcomas, vascular sarcomas, and sarcomas of uncertain differentiation uncommonly arise in the abdomen and pelvis and the abdominal wall. Although these lesions are rare sarcomas and their imaging features overlap, familiarity with the locations where they occur and their imaging features is important so they can be diagnosed accurately. The anatomic location and clinical history are important factors in the differential diagnosis of these lesions because metastasis, more-common sarcomas, borderline fibroblastic proliferations (such as desmoid tumors), and endometriosis have imaging findings that overlap with those of these uncommon sarcomas. In this article, the clinical, pathologic, and imaging findings of uncommon soft-tissue sarcomas of the abdomen and pelvis and the abdominal wall are reviewed, with an emphasis on their differential diagnosis.


Subject(s)
Abdomen/diagnostic imaging , Abdomen/pathology , Pelvis/diagnostic imaging , Pelvis/pathology , Sarcoma/diagnostic imaging , Sarcoma/pathology , Diagnosis, Differential , Humans
18.
Hum Pathol ; 67: 1-10, 2017 09.
Article in English | MEDLINE | ID: mdl-28551330

ABSTRACT

Patients with neurofibromatosis 1 (NF1) develop multiple neurofibromas, with 8% to 15% of patients experiencing malignant peripheral nerve sheath tumor (MPNST) during their lifetime. Prediction of transformation, typically from plexiform neurofibroma, is clinically and histologically challenging. In this overview, after a consensus meeting in October 2016, we outline the histopathologic features and molecular mechanisms involved in the malignant transformation of neurofibromas. Nuclear atypia alone is generally insignificant. However, with atypia, loss of neurofibroma architecture, high cellularity, and/or mitotic activity >1/50 but <3/10 high-power fields, the findings are worrisome for malignancy. We propose the term "atypical neurofibromatous neoplasms of uncertain biologic potential (ANNUBP)" for lesions displaying at least 2 of these features. This diagnosis should prompt additional sampling, clinical correlation, and possibly, expert pathology consultation. Currently, such tumors are diagnosed inconsistently as atypical neurofibroma or low-grade MPNST. Most MPNSTs arising from neurofibromas are high-grade sarcomas and pose little diagnostic difficulty, although rare nonnecrotic tumors with 3-9 mitoses/10 high-power fields can be recognized as low-grade variants. Although neurofibromas contain numerous S100 protein/SOX10-positive Schwann cells and CD34-positive fibroblasts, both components are reduced or absent in MPNST. Loss of p16/CDKN2A expression, elevated Ki67 labeling, and extensive nuclear p53 positivity are also features of MPNST that can to some degree already occur in atypical neurofibromatous neoplasms of uncertain biologic potential. Complete loss of trimethylated histone 3 lysine 27 expression is potentially more reliable, being immunohistochemically detectable in about half of MPNSTs. Correlated clinicopathological, radiologic, and genetic studies should increase our understanding of malignant transformation in neurofibromas, hopefully improving diagnosis and treatment soon.


Subject(s)
Neurilemmoma/pathology , Neurofibromatosis 1/pathology , Biomarkers, Tumor/analysis , Biopsy , Cell Nucleus/pathology , Consensus , Disease Progression , Humans , Immunohistochemistry , Mitosis , Neoplasm Grading , Neurilemmoma/chemistry , Neurilemmoma/classification , Neurofibromatosis 1/classification , Neurofibromatosis 1/metabolism , Predictive Value of Tests , Terminology as Topic
19.
Radiographics ; 37(2): 462-483, 2017.
Article in English | MEDLINE | ID: mdl-28287938

ABSTRACT

Soft-tissue sarcomas are a diverse group of rare mesenchymal malignancies that can arise at any location in the body and affect all age groups. These sarcomas are most common in the extremities, trunk wall, retroperitoneum, and head and neck. In the adult population, soft-tissue sarcomas arising in the abdomen and pelvis are often large masses at the time of diagnosis because they are usually clinically silent or cause vague or mild symptoms until they invade or compress vital organs. In contrast, soft-tissue sarcomas arising from the abdominal wall come to clinical attention earlier in the course of disease because they cause a palpable mass, abdominal wall deformity, or pain that is more clinically apparent. The imaging features of abdominal and pelvic sarcomas and abdominal wall sarcomas can be nonspecific and overlap with more common pathologic conditions, making diagnosis difficult or, in some cases, delaying diagnosis. Liposarcoma (well-differentiated and dedifferentiated liposarcomas), leiomyosarcoma, and gastrointestinal stromal tumor (GIST) are the most common intra-abdominal primary sarcomas. Any soft-tissue sarcoma can arise in the abdominal wall. Knowledge of the classification and pathologic features of soft-tissue sarcomas, the anatomic locations where they occur, and their cross-sectional imaging features helps the radiologist establish the diagnosis or differential diagnosis so that patients with soft-tissue sarcomas can receive optimal treatment and management. In part 1 of this article, the most common soft-tissue sarcomas (liposarcoma, leiomyosarcoma, and GIST) are reviewed, with a discussion on anatomic locations, classification, clinical considerations, and differential diagnosis. Part 2 will focus on the remainder of the soft-tissue sarcomas occurring in the abdomen and pelvis.


Subject(s)
Abdominal Cavity/diagnostic imaging , Abdominal Cavity/pathology , Pelvis/diagnostic imaging , Pelvis/pathology , Sarcoma/diagnostic imaging , Sarcoma/pathology , Soft Tissue Neoplasms/diagnostic imaging , Soft Tissue Neoplasms/pathology , Diagnosis, Differential , Humans
20.
J Pathol ; 241(5): 626-637, 2017 04.
Article in English | MEDLINE | ID: mdl-28138962

ABSTRACT

The PAX3-FOXO1 fusion gene is generated by a 2;13 chromosomal translocation and is a characteristic feature of an aggressive subset of rhabdomyosarcoma (RMS). To dissect the mechanism of oncogene action during RMS tumourigenesis and progression, doxycycline-inducible PAX3-FOXO1 and constitutive MYCN expression constructs were introduced into immortalized human myoblasts. Although myoblasts expressing PAX3-FOXO1 or MYCN alone were not transformed in focus formation assays, combined PAX3-FOXO1 and MYCN expression resulted in transformation. Following intramuscular injection into immunodeficient mice, myoblasts expressing PAX3-FOXO1 and MYCN formed rapidly growing RMS tumours, whereas myoblasts expressing only PAX3-FOXO1 formed tumours after a longer latency period. Doxycycline withdrawal in myoblasts expressing inducible PAX3-FOXO1 and constitutive MYCN following tumour formation in vivo or focus formation in vitro resulted in tumour regression or smaller foci associated with myogenic differentiation and cell death. Following regression, most tumours recurred in the absence of doxycycline. Analysis of recurrent tumours revealed a subset without PAX3-FOXO1 expression, and cell lines derived from these recurrent tumours showed transformation in the absence of doxycycline. The doxycycline-independent oncogenicity in these recurrent tumour-derived lines persisted even after PAX3-FOXO1 was inactivated with a CRISPR/Cas9 editing strategy. Whereas cell lines derived from primary tumours were dependent on PAX3-FOXO1 and differentiated following doxycycline withdrawal, recurrent tumour-derived cells without PAX3-FOXO1 expression did not differentiate under these conditions. These findings indicate that PAX3-FOXO1 collaborates with MYCN during early RMS tumourigenesis to dysregulate proliferation and inhibit myogenic differentiation and cell death. Although most cells in the primary tumours are dependent on PAX3-FOXO1, recurrent tumours can develop by a PAX3-FOXO1-independent mechanism, in which rare cells are postulated to acquire secondary transforming events that were activated or selected by initial PAX3-FOXO1 expression. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Carcinogenesis/genetics , Neoplasm Recurrence, Local/genetics , Oncogene Proteins, Fusion/genetics , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma/genetics , Translocation, Genetic/genetics , Animals , Cell Death , Cell Differentiation , Cell Line, Tumor , Doxycycline/administration & dosage , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, SCID , Muscle Development , Myoblasts/metabolism , Myoblasts/pathology , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Oncogene Proteins, Fusion/metabolism , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Paired Box Transcription Factors/metabolism , Rhabdomyosarcoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...