Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1386225, 2024.
Article in English | MEDLINE | ID: mdl-38584944

ABSTRACT

Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.

2.
J Mass Spectrom ; 58(10): e4961, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37461255

ABSTRACT

A breeding program to produce new grape varieties tolerant to main vine fungal pathogens (Plasmopara viticola and Erysiphe necator) is carrying out by crossing Vitis vinifera cv. "Glera" with resistant genotypes such as "Solaris," "Bronner," and "Kunleany." Firstly, resistance gene-based markers analyses allowed the identification of five genotypes, which have inherited the resistance loci against mildews. To select those that also inherited the phenotype as close as possible to 'Glera' suitable to be introduced in the Prosecco wine production protocols, the grape glycosidic derivatives were studied by UHPLC/QTOF mass spectrometry. Targeted identification of the metabolites was performed using a database expressly constructed by including the glycosidic volatile precursors previously identified in grape and wine. A total of 77 glycosidic derivatives including many aroma precursors and some variety markers, were identified. Original resistant genotypes had distinct metabolomic profiles and different to 'Glera', while the crossings showed varying similarity degrees to V. vinifera parent. Findings demonstrated the Glera × Bronner and Glera × Solaris crossings are more suitable to produce high-sustainable Prosecco wines. Coupling of glycosidic volatile precursors profiling to multivariate statistical analysis was effective for phenotypic characterization of grapes and to evaluate their enological potential.


Subject(s)
Vitis , Wine , Vitis/chemistry , Glycosides/analysis , Wine/analysis , Mass Spectrometry , Odorants/analysis , Fruit/chemistry
3.
J Sci Food Agric ; 102(14): 6623-6631, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35608915

ABSTRACT

BACKGROUND: Somatic mutations in Vitis spp. are relatively frequent and can generate new agronomically interesting phenotypes. We report the discovery, genetic and chemical characterization of 'Glera rosa', a mutant for the berry skin colour of 'Glera', the main white cultivar used to produce Prosecco wine. RESULTS: We ascertained the relationship between the skin colour of 'Glera rosa' and the polymorphisms in the Myb-gene transcription factors involved in polyphenol biosynthesis. We established that VvMybA1 was homozygous (VvMybA1a/VvMybA1a) in 'Glera' but heterozygous (VvmybA1a/VvmybA1b) in the 'Glera rosa' mutant. We verified that the VvMybA1a non-functional allele contained Grapevine Retrotransposon 1 (Gret1), while in the VvmybA1b allele Gret1 was missing, and the gene function was partially restored. The effects of mutation on 'Glera rosa' grape metabolites were studied by high-resolution mass spectrometry and gas chromatography/mass spectrometry analysis. Fifteen anthocyanins and five unique flavonols were found in the 'Glera rosa' mutant. The mutation also increased the contents of trans-resveratrol and its derivatives (i.e., piceatannol, E-ε-viniferin, cis- and trans-piceid) and of some flavonols in grape. Finally, the mutation did not significantly affect the typical aroma precursors of Glera grape such as glycosidic monoterpenes, norisoprenoids and benzenoids. CONCLUSION: 'Glera rosa' could be an interesting genetic source for the wine industry to produce Prosecco DOC rosé typology (made by adding up to 15% of 'Pinot Noir'), which was introduced to the market in 2020 with a worldwide massive success. © 2022 Society of Chemical Industry.


Subject(s)
Vitis , Wine , Anthocyanins/analysis , Color , Flavonols/analysis , Fruit/chemistry , Glycosides/analysis , Monoterpenes/analysis , Norisoprenoids/analysis , Odorants/analysis , Polyphenols/analysis , Resveratrol/analysis , Retroelements , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/chemistry , Wine/analysis
4.
BMC Plant Biol ; 21(1): 528, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34763660

ABSTRACT

BACKGROUND: Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS: The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS: The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.


Subject(s)
Disease Resistance/genetics , Erysiphe/physiology , Genes, Plant , Plant Diseases/genetics , Vitis/genetics , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Genetic Linkage , Genotyping Techniques , Plant Diseases/microbiology , Quantitative Trait Loci , Vitis/microbiology
5.
Plants (Basel) ; 10(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34451584

ABSTRACT

The protection of grapevine biodiversity and the safeguarding of genetic variability are certainly primary and topical objectives for wine research, especially in territories historically devoted to viticulture. To assess the autochthonous germplasm of three different districts of Southern Umbria (Central Italy), the plant material of 70 grapevines retrieved from reforested land plots or old vineyards was collected, and their genetic identity was investigated using 13 microsatellite markers (SSR). The results revealed the presence of 39 unique genotypes, divided into 24 already-known cultivars and 15 never-reported SSR profiles. Most of the grapevine accessions were then vegetatively propagated and cultivated in a vineyard collection both to be protected from extinction and to be evaluated at the ampelographic level. Overall, this work emphasizes the need for recovering the threatened genetic variability that characterizes minor neglected grapevine cultivars or biotypes of Southern Umbria germplasm, and the requirement to revalue and exploit the more valuable genetic resources to enhance the local agri-food economy.

7.
Plants (Basel) ; 9(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580445

ABSTRACT

Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most serious grapevine diseases. The development of new varieties, showing partial resistance to downy mildew, through traditional breeding provides a sustainable and effective solution for disease management. Marker-assisted-selection (MAS) provide fast and cost-effective genotyping methods, but phenotyping remains necessary to characterize the host-pathogen interaction and assess the effective resistance level of new varieties as well as to validate MAS selection. In this study, the Rpv mediated defense responses were investigated in 31 genotypes, encompassing susceptible and resistant varieties and 26 seedlings, following inoculation of leaf discs with P. viticola. The offspring differed in Rpv loci inherited (none, one or two): Rpv3-3 and Rpv10 from Solaris and Rpv3-1 and Rpv12 from Kozma 20-3. To improve the assessment of different resistance responses, pathogen reaction (sporulation) and host reaction (necrosis) were scored separately as independent features. They were differently expressed depending on Rpv locus: offspring carrying Rpv3-1 and Rpv12 loci showed the strongest resistance response (scarce sporulation and necrosis), those carrying Rpv3-3 locus showed the highest levels of necrosis while Rpv10 carrying genotypes showed intermediate levels of both sporulation and necrosis.

8.
Sci Rep ; 10(1): 7206, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350312

ABSTRACT

'Glera' and 'Ribolla Gialla' are the most economically relevant local grapevine cultivars of Friuli Venezia Giulia region (north-eastern Italy). 'Glera' is used to produce the world-renowned Prosecco wine. 'Ribolla Gialla' cultivation is constantly increasing due to the strong demand for sparkling wine and is the most important variety in Brda (Slovenia). Knowledge of local varieties history in terms of migration and pedigree relationships has scientific and marketing appeal. Following prospections, genotyping and ampelographic characterization of minor germplasm in Friuli Venezia Giulia, a further research was developed to understand the parentage relationships among the grapevine varieties grown in this region. An integrated strategy was followed combining the analysis of nuclear and chloroplast microsatellites with the Vitis 18k SNP chip. Two main recurrent parents were found, which can be regarded as "founders": 'Vulpea', an Austrian variety parent-offspring related with at least ten Friuli Venezia Giulia cultivars, among them 'Glera', and 'Refosco Nostrano', first degree related with other six Friuli Venezia Giulia varieties. 'Ribolla Gialla' was shown to be another member of the impressively long list of offspring derived from the prolific 'Heunisch Weiss'. Combining molecular markers and historical references was a high-performance strategy for retracing and adjusting the history of cultivars.

9.
Front Microbiol ; 8: 1595, 2017.
Article in English | MEDLINE | ID: mdl-28883812

ABSTRACT

In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

10.
Mol Biotechnol ; 48(3): 244-54, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21188550

ABSTRACT

This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 53 Garnacha accessions coming from Italy, France and Spain. The samples studied include 28 Italian accessions (named Tocai rosso in Vicenza area; Alicante in Sicily and Elba island; Gamay perugino in Perugia province; Cannonau in Sardinia), 19 Spanish accessions of different types (named Garnacha tinta, Garnacha blanca, Garnacha peluda, Garnacha roja, Garnacha erguida, Garnacha roya) and 6 French accessions (named Grenache and Grenache noir). In order to verify the varietal identity of the samples, analyses based on 14 simple sequence repeat (SSR) loci were performed. The presence of an additional allele at ISV3 locus (151 bp) was found in four Tocai rosso accessions and in a Sardinian Cannonau clone, that are, incidentally, chimeras. In addition to microsatellite analysis, intravarietal variability study was performed using AFLP, SAMPL and M-AFLP molecular markers. AFLPs could discriminate among several Garnacha samples; SAMPLs allowed distinguishing few genotypes on the basis of their geographic origin, whereas M-AFLPs revealed plant-specific markers, differentiating all accessions. Italian samples showed the greatest variability among themselves, especially on the basis of their different provenance, while Spanish samples were the most similar, in spite of their morphological diversity.


Subject(s)
Amplified Fragment Length Polymorphism Analysis/methods , Genetic Markers/genetics , Polymerase Chain Reaction/methods , Vitis/genetics , Cluster Analysis , DNA, Plant/analysis , Genetic Variation , Italy , Microsatellite Repeats , Spain , Vitis/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...