Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 112(7): 1107-1123, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38433552

ABSTRACT

The ever-growing need for new tissue and organ replacement approaches paved the way for tissue engineering. Successful tissue regeneration requires an appropriate scaffold, which allows cell adhesion and provides mechanical support during tissue repair. In this light, an interpenetrating polymer network (IPN) system based on biocompatible polysaccharides, dextran (Dex) and gellan (Ge), was designed and proposed as a surface that facilitates cell adhesion in tissue engineering applications. The new matrix was developed in glycerol, an unconventional solvent, before the chemical functionalization of the polymer backbone, which provides the system with enhanced properties, such as increased stiffness and bioadhesiveness. Dex was modified introducing methacrylic groups, which are known to be sensitive to UV light. At the same time, Ge was functionalized with RGD moieties, known as promoters for cell adhesion. The printability of the systems was evaluated by exploiting the ability of glycerol to act as a co-initiator in the process, speeding up the kinetics of crosslinking. Following semi-IPNs formation, the solvent was removed by extensive solvent exchange with HEPES and CaCl2, leading to conversion into IPNs due to the ionic gelation of Ge chains. Mechanical properties were investigated and IPNs ability to promote osteoblasts adhesion was evaluated on thin-layer, 3D-printed disk films. Our results show a significant increase in adhesion on hydrogels decorated with RGD moieties, where osteoblasts adopted the spindle-shaped morphology typical of adherent mesenchymal cells. Our findings support the use of RGD-decorated Ge/Dex IPNs as new matrices able to support and facilitate cell adhesion in the perspective of bone tissue regeneration.


Subject(s)
Cell Adhesion , Dextrans , Glycerol , Methacrylates , Oligopeptides , Polysaccharides, Bacterial , Printing, Three-Dimensional , Oligopeptides/chemistry , Oligopeptides/pharmacology , Glycerol/chemistry , Glycerol/pharmacology , Methacrylates/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Dextrans/chemistry , Cell Adhesion/drug effects , Animals , Mice , Humans
2.
Pharmaceutics ; 15(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896268

ABSTRACT

Nanocarriers have been extensively developed in the biomedical field to enhance the treatment of various diseases. However, to effectively deliver therapeutic agents to desired target tissues and enhance their pharmacological activity, these nanocarriers must overcome biological barriers, such as mucus gel, skin, cornea, and blood-brain barriers. Polysaccharides possess qualities such as excellent biocompatibility, biodegradability, unique biological properties, and good accessibility, making them ideal materials for constructing drug delivery carriers. Nanogels, as a novel drug delivery platform, consist of three-dimensional polymer networks at the nanoscale, offering a promising strategy for encapsulating different pharmaceutical agents, prolonging retention time, and enhancing penetration. These attractive properties offer great potential for the utilization of polysaccharide-based nanogels as drug delivery systems to overcome biological barriers. Hence, this review discusses the properties of various barriers and the associated constraints, followed by summarizing the most recent development of polysaccharide-based nanogels in drug delivery to overcome biological barriers. It is expected to provide inspiration and motivation for better design and development of polysaccharide-based drug delivery systems to enhance bioavailability and efficacy while minimizing side effects.

3.
J Funct Biomater ; 14(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37754896

ABSTRACT

The novel amphiphilic polyacrylate grafted with cholesterol moieties, PAAbCH, previously synthesized, was deeply characterized and investigated in the lab and on a pre-industrial scale. Solid-state NMR analysis confirmed the polymer structure, and several water-based pharmaceutical and cosmetic products were developed. In particular, stable oil/water emulsions with vegetable oils, squalene, and ceramides were prepared, as well as hydrophilic medicated films loaded with diclofenac, providing a prolonged drug release. PAAbCH also formed polyelectrolyte hydrogel complexes with chitosan, both at the macro- and nano-scale. The results demonstrate that this polymer has promising potential as an innovative excipient, acting as a solubility enhancer, viscosity enhancer, and emulsifying agent with an easy scale-up transfer process.

4.
Funct Neurol ; 23(2): 87-91, 2008.
Article in English | MEDLINE | ID: mdl-18671909

ABSTRACT

Optimal treatment of spasticity requires a combination of pharmacotherapy and muscle lengthening. We evaluated 13 stroke patients with equinovarus foot randomized to treatment with either botulinum toxin A (BTA) injection plus ankle-foot casting (n=6) or BTA alone (n=7). The tibialis posterior and calf muscles (range of BTA injection: 190 to 320 U) were treated in each patient. Castings were worn at night for four months. Each patient was examined before, and at two and four months after BTA injection using the static and dynamic baropodometric tests, the Modified Ashworth Scale and the 10-meter walking test. At two months, therapeutic effects were observed in both groups. At four months, the study group showed further clinical improvement, while the control group returned to baseline performance. Thus, prolonged stretching of spastic muscles after BTA injection affords long-lasting therapeutic benefit, enhancing the effects of the toxin alone.


Subject(s)
Botulinum Toxins, Type A/therapeutic use , Clubfoot/therapy , Muscle Spasticity/therapy , Neuromuscular Agents/therapeutic use , Splints , Stroke/complications , Aged , Analysis of Variance , Clubfoot/etiology , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Male , Middle Aged , Muscle Spasticity/etiology , Single-Blind Method , Statistics, Nonparametric , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...