Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Phytopathology ; 113(2): 345-354, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35972890

ABSTRACT

Members of the genus Luteovirus are responsible for economically destructive plant diseases worldwide. Over the past few years, three luteoviruses infecting Prunus trees have been characterized. However, the biological properties, prevalence, and genetic diversity of those viruses have not yet been studied. High-throughput sequencing of samples of various wild, cultivated, and ornamental Prunus species enabled the identification of four novel species in the genus Luteovirus for which we obtained complete or nearly complete genomes. Additionally, we identified another new putative species recovered from Sequence Read Archive data. Furthermore, we conducted a survey on peach-infecting luteoviruses in eight European countries. Analyses of 350 leaf samples collected from germplasm, production orchards, and private gardens showed that peach-associated luteovirus (PaLV), nectarine stem pitting-associated virus (NSPaV), and a novel luteovirus, peach-associated luteovirus 2 (PaLV2), are present in all countries; the most prevalent virus was NSPaV, followed by PaLV. The genetic diversity of these viruses was also analyzed. Moreover, the biological indexing on GF305 peach indicator plants demonstrated that PaLV and PaLV2, like NSPaV, are transmitted by graft at relatively low rates. No clear viral symptoms have been observed in either graft-inoculated GF305 indicators or different peach tree varieties observed in an orchard. The data generated during this study provide a broader overview of the genetic diversity, geographical distribution, and prevalence of peach-infecting luteoviruses and suggest that these viruses are likely asymptomatic in peach under most circumstances.


Subject(s)
Luteovirus , Prunus , Viruses , Luteovirus/genetics , Plant Diseases , Viruses/genetics , High-Throughput Nucleotide Sequencing
2.
Life (Basel) ; 14(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38255686

ABSTRACT

Papaver somniferum L. is cultivated for its edible seeds and for the production of alkaloids. A serious problem in seed trade and processing is the intentional mixing of excellent food-quality seeds with non-food-grade-quality seeds. Tracking the correct or illegitimate handling of seeds requires an efficient method for discrimination and individualization of poppy varieties. As in human and animal forensics, DNA variable regions containing short tandem repeats (STRs) located either in non-coding DNA or in gene sequences (EST-STRs) are preferred markers for discrimination between genotypes. Primers designed for 10 poppy EST-STR loci not analyzed so far were tested for their discriminatory ability on a set of 23 related P. somniferum L. genotypes. Thirty-three EST-STR alleles were identified together. Their polymorphic information content (PIC) values were in the range of 0.175-0.649. The PI value varied in the range of 0.140-0.669, and the cumulative PI was 1.2 × 10-5. PIsibs values varied between 0.436 and 0.820 and the cumulative value was lower (5.0 × 10-3). All analyzed genotypes were distinguished mutually, each with its own unique EST-STR profile. These newly developed EST-STR markers more effectively discriminated P. somniferum L. genotypes, even those genotypes whose DNA profiles were previously identical.

3.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501358

ABSTRACT

Datura stramonium L. produces tropane alkaloids, and the hyoscyamine is dominant among them. Hyoscyamine is produced by hairy root cultures in vitro derived from native plants or plants with the genetically modified biosynthetic pathway for hyoscyamine. A common procedure is extraction from cultivated plants. Elicitors for increased production can be used in both cases. Live viruses are not well known for use as elicitors, therefore, D. stramonium plants grown in soil were artificially infected with the tobamoviruses Pepper mild mottle virus (PMMoV), Tomato mosaic virus (ToMV), and Tobacco mosaic virus (TMV). Differences in the content of hyoscyamine were between capsules and roots of infected and non-infected plants. Elicitation increased content of hyoscyamine in capsules 1.23-2.34 times, compared to the control. The most effective viruses were PMMoV and ToMV (isolate PV143), which increased content to above 19 mg/g of fresh weight of a capsule. The effect of each virus elicitor was expressed also in hyoscyamine content in roots. Elicited plants contained 5.41-16.54 times more hyoscyamine in roots compared to non-elicited plants. The most effective elicitor was ToMV SL-1, which raised production above 20 mg/g fresh weight of roots. It has been shown that tobamoviruses can be used as biotic elicitors.

4.
Polymers (Basel) ; 14(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015673

ABSTRACT

In addition to the structural and storage functions of the (1,3; 1,4)-ß-d-glucans (ß-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing the ß-d-glucans content, expression of related cellulose synthase-like (Csl) Cs1F6, CslF9, CslF3 genes, content of chlorophylls, and ß-1,3-glucanase content in oat (Avena sativa L.) leaves infected with the commonly occurring oat fungal pathogen, Blumeria graminis f. sp. avenae (B. graminis). Its presence influenced all measured parameters. The content of ß-d-glucans in infected leaves decreased in all used varieties, compared to the non-infected plants, but not significantly. Oats reacted differently, with Aragon and Vaclav responding with overexpression, and Bay Yan 2, Ivory, and Racoon responding with the underexpression of these genes. Pathogens changed the relative ratios regarding the expression of CslF6, CslF9, and CslF3 genes from neutral to negative correlations. However, changes in the expression of these genes did not statistically significantly affect the content of ß-d-glucans. A very slight indication of positive correlation, but statistically insignificant, was observed between the contents of ß-d-glucans and chlorophylls. Some isoforms of ß-1,3-glucanases accumulated to a several-times higher level in the infected leaves of all varieties. New isoforms of ß-1,3-glucanases were also detected in infected leaves after fungal infection.

5.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886991

ABSTRACT

The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds-as well as their production potential-is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop.


Subject(s)
Meristem , Plant Growth Regulators , Cytokinins/pharmacology , Indoleacetic Acids/metabolism , Meristem/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plants/metabolism , Stem Cells/metabolism
6.
Plants (Basel) ; 11(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807616

ABSTRACT

Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses.

7.
Viruses ; 14(6)2022 06 18.
Article in English | MEDLINE | ID: mdl-35746802

ABSTRACT

Plant viruses threaten agricultural production by reducing the yield, quality, and economical benefits. Tomato mosaic virus (ToMV) from the genus Tobamovirus causes serious losses in the quantity and quality of tomato production. The management of plant protection is very difficult, mainly due to the vector-less transmission of ToMV. Resistant breeding generally has low effectiveness. The most practical approach is the use of a rapid diagnostic assay of the virus' presence before the symptoms occur in plants, followed by the eradication of virus-infected plants. Such approaches also include serological detection methods (ELISA and Western immunoblotting), where antibodies need to be developed for an immunochemical reaction. The development and characterization of polyclonal antibodies for the detection of ToMV with appropriate parameters (sensitivity, specificity, and cross-reactivity) were the subjects of this study. A new polyclonal antibody, AB-1, was developed in immunized rabbits using the modified oligopeptides with antigenic potential (sequences are revealed) derived from the coat protein of ToMV SL-1. the developed polyclonal antibody. AB-1, showed higher sensitivity when compared with commercially available analogs. It also detected ToMV in infected pepper and eggplant plants, and detected another two tobamoviruses (TMV and PMMoV) and ToMV in soil rhizosphere samples and root residues, even two years after the cultivation of the infected tomato plant.


Subject(s)
Plant Viruses , Solanum lycopersicum , Tobamovirus , Animals , Humans , Plant Breeding , Plant Diseases , Plants , Rabbits , Tobamovirus/genetics
8.
Plants (Basel) ; 10(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34834825

ABSTRACT

An evaluation of polymorphism at the microsatellite loci was applied in distinguishing 85 oat (Avena sativa L.) genotypes selected from the collection of genetic resources. The set of genotypes included oats with white, yellow, and brown seeds as well as a subgroup of naked oat (Avena sativa var. nuda Koern). Variation at these loci was used to form potential heterotic groups potentially used in the oat breeding program. Seven from 20 analyzed microsatellite loci revealed polymorphism. Altogether, 35 microsatellite alleles were detected (2-10 per locus). Polymorphic patterns completely differentiated all genotypes within the subgroups of white, brown, and naked oats, respectively. Only within the greatest subgroup of yellow genotypes, four pairs of genotypes remained unseparated. Genetic differentiation between the oat subgroups allowed the formation of seven potential heterotic groups using the STRUCTURE analysis. The overall value of the fixation index (Fst) suggested a high genetic differentiation between the subgroups and validated a heterotic grouping. This approach can be implemented as a simple predictor of heterosis in parental crosses prior to extensive field testing or development and implementation of more accurate genomic selection.

9.
Plants (Basel) ; 10(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807609

ABSTRACT

The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates.

10.
Plants (Basel) ; 10(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921504

ABSTRACT

In recent years, high throughput sequencing (HTS) has brought new possibilities to the study of the diversity and complexity of plant viromes. Mixed infection of a single plant with several viruses is frequently observed in such studies. We analyzed the virome of 10 tomato and sweet pepper samples from Slovakia, all showing the presence of potato virus Y (PVY) infection. Most datasets allow the determination of the nearly complete sequence of a single-variant PVY genome, belonging to one of the PVY recombinant strains (N-Wi, NTNa, or NTNb). However, in three to-mato samples (T1, T40, and T62) the presence of N-type and O-type sequences spanning the same genome region was documented, indicative of mixed infections involving different PVY strains variants, hampering the automated assembly of PVY genomes present in the sample. The N- and O-type in silico data were further confirmed by specific RT-PCR assays targeting UTR-P1 and NIa genomic parts. Although full genomes could not be de novo assembled directly in this situation, their deep coverage by relatively long paired reads allowed their manual re-assembly using very stringent mapping parameters. These results highlight the complexity of PVY infection of some host plants and the challenges that can be met when trying to precisely identify the PVY isolates involved in mixed infection.

11.
Pathogens ; 9(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228257

ABSTRACT

Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.

12.
Foods ; 9(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050241

ABSTRACT

Several commonly used extraction procedures and commercial kits were compared for extraction of DNA from opium poppy (Papaver somniferum L.) seeds, ground seeds, pollen grains, poppy seed filling from a bakery product, and poppy oil. The newly developed extraction protocol was much simpler, reduced the cost and time required for DNA extraction from the native and ground seeds, and pollen grains. The quality of extracted DNA by newly developed protocol was better or comparable to the most efficient ones. After being extended by a simple purification step on a silica membrane column, the newly developed protocol was also very effective in extracting of poppy DNA from poppy seed filling. DNA extracted from this poppy matrix was amplifiable by PCR analysis. DNA extracted from cold-pressed poppy oil and suitable for amplifications was obtained only by methods developed previously for olive oil. Extracted poppy DNA from all tested matrices was analysed by PCR using primers flanking a microsatellite locus (156 bp) and two different fragments of the reference tubulin gene (553 bp and 96 bp). The long fragment of the reference gene was amplified in DNA extracted from native seeds, ground seeds, and pollen grains. Poppy DNA extracted from the filling of bakery product was confirmed only by amplification of short fragments (96 bp and 156 bp). DNA extracted from cold-pressed poppy oil was determined also only by amplification of these two short fragments.

13.
Life (Basel) ; 10(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947896

ABSTRACT

Euonymus species from the Celastraceae family are considered as a source of unusual genes modifying the oil content and fatty acid composition of vegetable oils. Due to the possession of genes encoding enzyme diacylglycerol acetyltransferase (DAcT), Euonymus plants can synthesize and accumulate acetylated triacyglycerols. The gene from Euonymus europaeus (EeDAcT) encoding the DAcT was identified, isolated, characterized, and modified for cloning and genetic transformation of plants. This gene has a unique nucleotide sequence and amino acid composition, different from orthologous genes from other Euonymus species. Nucleotide sequence of original EeDAcT gene was modified, cloned into transformation vector, and introduced into tobacco plants. Overexpression of EeDAcT gene was confirmed, and transgenic host plants produced and accumulated acetylated triacylglycerols (TAGs) in immature seeds. Individual transgenic plants showed difference in amounts of synthesized acetylTAGs and also in fatty acid composition of acetylTAGs.

14.
Plants (Basel) ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466094

ABSTRACT

Plant viruses infecting crop species are causing long-lasting economic losses and are endangering food security worldwide. Ongoing events, such as climate change, changes in agricultural practices, globalization of markets or changes in plant virus vector populations, are affecting plant virus life cycles. Because farmer's fields are part of the larger environment, the role of wild plant species in plant virus life cycles can provide information about underlying processes during virus transmission and spread. This review focuses on the Solanaceae family, which contains thousands of species growing all around the world, including crop species, wild flora and model plants for genetic research. In a first part, we analyze various viruses infecting Solanaceae plants across the agro-ecological interface, emphasizing the important role of virus interactions between the cultivated and wild zones as global changes affect these environments on both local and global scales. To cope with these changes, it is necessary to adjust prophylactic protection measures and diagnostic methods. As illustrated in the second part, a complex virus research at the landscape level is necessary to obtain relevant data, which could be overwhelming. Based on evidence from previous studies we conclude that Solanaceae plant communities can be targeted to address complete life cycles of viruses with different life strategies within the agro-ecological interface. Data obtained from such research could then be used to improve plant protection methods by taking into consideration environmental factors that are impacting the life cycles of plant viruses.

15.
Plants (Basel) ; 9(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31887986

ABSTRACT

Ribosomal RNA-depleted total RNAs from a sweet pepper plant (Capsicum annuum, labelled as N65) grown in western Slovakia and showing severe virus-like symptoms (chlorosis, mottling and deformation of leaf lamina) were subjected to high-throughput sequencing (HTS) on an Illumina MiSeq platform. The de novo assembly of ca. 5.5 million reads, followed by mapping to the reference sequences, revealed the coinfection of pepper by several viruses; i.e., cucumber mosaic virus (CMV), watermelon mosaic virus (WMV), pepper cryptic virus 2 (PCV2) and bell pepper endornavirus (BPEV). A complete polyprotein-coding genomic sequence (14.6 kb) of BPEV isolate N65 was determined. A comparison of BPEV-N65 sequences with BPEV genomes available in GenBank showed 86.1% to 98.6% identity at the nucleotide level. The close phylogenetic relationship with isolates from India and China resulted in their distinct grouping compared to the other BPEV isolates. Further analysis has revealed the presence of BPEV in sweet or chili peppers obtained from various sources and locations in Slovakia (plants grown in gardens, greenhouse or retail shop). Additionally, the partial sequencing of two genomic portions from 15 BPEV isolates revealed that the Slovak isolates segregated into two molecular clusters, indicating a genetically distinct population (mean inter-group nucleotide divergence reaching 12.7% and 14.5%, respectively, based on the genomic region targeted). Due to the mix infections of BPEV-positive peppers by potato virus Y (PVY) and/or CMV, the potential role of individual viruses in the observed symptomatology could not be determined. This is the first evidence and characterization of BPEV from the central European region.

16.
Viruses ; 10(8)2018 08 14.
Article in English | MEDLINE | ID: mdl-30110973

ABSTRACT

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


Subject(s)
Genome, Viral , Papaver/virology , Phylogeny , Plant Diseases/virology , Potyvirus/genetics , Reassortant Viruses/genetics , Biological Evolution , Gene Expression , Genetic Variation , Plant Leaves/virology , Polyproteins/genetics , Potyvirus/classification , Potyvirus/isolation & purification , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Recombination, Genetic , Slovakia , Viral Load , Viral Proteins/genetics
17.
J Biotechnol ; 284: 115-122, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30165117

ABSTRACT

Essential polyunsaturated fatty acids with more than two double bonds and length of carbon chain 18-22 must be taken in the diet to prevent diseases and imbalances caused by their deficiency. Terrestrial sources of polyunsaturated fatty acids are limited to only a few plant species whose large-scale cultivation is not possible and the production of their seeds and oil is ineffective. The complete biosynthetic pathway of fatty acids is known in organisms, including plants. After the first gene encoding the enzyme catalysing the initial steps of PUFA biosynthesis (ω-3 desaturase, Δ6-desaturase) were isolated, isolation of other genes encoding relevant enzymes of the PUFA pathway from different donor organisms followed. Genetic transformations of model plants by the desaturase- and elongase-encoding genes opened the way for the genetic engineering of oilseed crop species. Some of the developed transgenic plants produced PUFAs, including eicosapentaenoic and docosahexaenoic acids. Seed oils extracted from them were similar to fish oil. Tools of the synthetic biology can be applied in modifications of the PUFA pathway and also in overcoming of limitations when the gene and its expression product are absent in the pathway. Such progress in cereals (barley, wheat, maize) has been made only recently, when the first successful modifications of the ω-3 and ω-6 PUFA pathways succeeded. This review focuses on genetic modifications of the PUFA biosynthetic pathway in cereals in relation to the status reached in model plants and oilseed crops.


Subject(s)
Edible Grain/genetics , Edible Grain/metabolism , Fatty Acids, Unsaturated/biosynthesis , Metabolic Engineering , Cold Temperature , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological
18.
Electron. j. biotechnol ; 30: 1-5, nov. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1021034

ABSTRACT

Background: The enzymes utilized in the process of beer production are generally sensitive to higher temperatures. About 60% of them are deactivated in drying the malt that limits the utilization of starting material in the fermentation process. Gene transfer from thermophilic bacteria is a promising tool for producing barley grains harboring thermotolerant enzymes. Results: Gene for α-amylase from hydrothermal Thermococcus, optimally active at 75­85°C and pH between 5.0 and 5.5, was adapted in silico to barley codon usage. The corresponding sequence was put under control of the endosperm-specific promoter 1Dx5 and after synthesis and cloning transferred into barley by biolistics. In addition to model cultivar Golden Promise we transformed three Slovak barley cultivars Pribina, Levan and Nitran, and transgenic plants were obtained. Expression of the ~50 kDa active recombinant enzyme in grains of cvs. Pribina and Nitran resulted in retaining up to 9.39% of enzyme activity upon heating to 75°C, which is more than 4 times higher compared to non-transgenic controls. In the model cv. Golden Promise the grain α-amylase activity upon heating was above 9% either, however, the effects of the introduced enzyme were less pronounced (only 1.22 fold difference compared with non-transgenic barley). Conclusions: Expression of the synthetic gene in barley enhanced the residual α-amylase activity in grains at high temperatures.


Subject(s)
Seeds/enzymology , Hordeum/enzymology , Thermococcus/metabolism , alpha-Amylases/metabolism , Seeds/genetics , Seeds/microbiology , Transformation, Genetic , Hordeum/genetics , Hordeum/microbiology , Beer , Enzyme Stability , Plants, Genetically Modified/enzymology , Cloning, Molecular , Gene Transfer Techniques , alpha-Amylases/genetics , Fermentation , Thermotolerance , Hot Temperature , Hydrogen-Ion Concentration
19.
Plant Pathol J ; 33(5): 508-513, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29018314

ABSTRACT

The complete genome sequence of a Slovak SL-1 isolate of Tomato mosaic virus (ToMV) was determined from the next generation sequencing (NGS) data, further confirming a limited sequence divergence in this tobamovirus species. Tomato genotypes Monalbo, Mobaci and Moperou, respectively carrying the susceptible tm-2 allele or the Tm-1 and Tm-2 resistant alleles, were tested for their susceptibility to ToMV SL-1. Although the three tomato genotypes accumulated ToMV SL-1 to similar amounts as judged by semi-quantitative DAS-ELISA, they showed variations in the rate of infection and symptomatology. Possible differences in the intra-isolate variability and polymorphism between viral populations propagating in these tomato genotypes were evaluated by analysis of the capsid protein (CP) encoding region. Irrespective of genotype infected, the intra-isolate haplotype structure showed the presence of the same highly dominant CP sequence and the low level of population diversity (0.08-0.19%). Our results suggest that ToMV CP encoding sequence is relatively stable in the viral population during its replication in vivo and provides further demonstration that RNA viruses may show high sequence stability, probably as a result of purifying selection.

20.
Int J Mol Sci ; 16(12): 30046-60, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26694368

ABSTRACT

The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%-0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%-1.40% (v/v) and 0%-1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.


Subject(s)
Biosynthetic Pathways , Fatty Acids, Unsaturated/biosynthesis , Gene Expression , Genes, Synthetic , Triticum/genetics , Amino Acid Sequence , Base Sequence , Biolistics , Chromatography, Gas , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction , Seeds/metabolism , Sequence Homology, Nucleic Acid , Transformation, Genetic , Transgenes , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...