Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39274145

ABSTRACT

The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, these materials must have a high adsorption capacity and selectivity. Other desired properties of these materials include a higher physical resistance, insolubility in water, and materials that can be regenerated or reused. Among the methods applied for the separation, purification, and preconcentration of platinum-group metal ions, adsorption is recognised as one of the most promising methods because of its simplicity, high efficiency, and wide availability. The studies were carried out using three supports: cellulose (CE), chitosan (Chi), and diatomea earth (Diat). These supports were functionalised by impregnation with extractants, using the ultrasound method. The extractants are environmentally friendly and relatively cheap amino acids, which contain in their structure pendant groups with nitrogen and sulphur heteroatoms (aspartic acid-Asp, l-glutamic acid-Glu, valine-Val, DL-cysteine-Cys, or serine-Ser). After preliminary testing from 75 synthesised materials, CE-Cys was chosen for the further recovery of Au(III) ions from aqueous solutions. To highlight the morphology and the functionalisation of the material, we physicochemically characterised the obtained material. Therefore, the analysis of the specific surface and porosity showed that the CE-Cys material has a specific surface of 4.6 m2/g, with a porosity of about 3 nm. The FT-IR analysis showed the presence, at a wavelength of 3340 cm-1, of the specific NH bond vibration for cysteine. At the same time, pHpZc was determined to be 2.8. The kinetic, thermodynamic, and equilibrium studies showed that the pseudo-second-order kinetic model best describes the adsorption process of Au(III) ions on the CE-Cys material. A maximum adsorption capacity of 12.18 mg per gram of the adsorbent material was achieved. It was established that the CE-Cys material can be reused five times with a good recovery degree.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37764601

ABSTRACT

In a contemporary sustainable economy, innovation is a prerequisite to recycling waste into new efficient materials designed to minimize pollution and conserve non-renewable natural resources. Using an innovative approach to remediating metal-polluted water, in this study, eggshell waste was used to prepare two new low-cost nanoadsorbents for the retrieval of nickel from aqueous solutions. Scanning electron microscopy (SEM) results show that in the first eggshell-zeolite (EZ) adsorbent, the zeolite nanoparticles were loaded in the eggshell pores. The preparation for the second (iron(III) oxide-hydroxide)-eggshell-zeolite (FEZ) nanoadsorbent led to double functionalization of the eggshell base with the zeolite nanoparticles, upon simultaneous loading of the pores of the eggshell and zeolite surface with FeOOH particles. Structural modification of the eggshell led to a significant increase in the specific surface, as confirmed using BET analysis. These features enabled the composite EZ and FEZ to remove nickel from aqueous solutions with high performance and adsorption capacities of 321.1 mg/g and 287.9 mg/g, respectively. The results indicate that nickel adsorption on EZ and FEZ is a multimolecular layer, spontaneous, and endothermic process. Concomitantly, the desorption results reflect the high reusability of these two nanomaterials, collectively suggesting the use of waste in the design of new, low-cost, and highly efficient composite nanoadsorbents for environmental bioremediation.

3.
Sci Rep ; 12(1): 9676, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690618

ABSTRACT

Sustainable waste and water management are key components of the newest EU policy regarding the circular economy. Simple, performant and inexpensive water treatment methods based on reusing waste are prerequisites for human health, sustainable development and environmental remediation. The design of performant, cost-effective absorbents represents a topical issue in wastewater treatment. This study aimed to investigate the development of a newly engineered adsorbent by functionalizing two different types of waste (industrial and food) with magnetic nanoparticles as environmentally friendly, highly efficient, cheap material for cadmium removal from aqueous solutions. This nano-engineered adsorbent (EFM) derived from waste eggshell and fly ash was used to remove the cadmium from the aqueous solution. SEM analysis has demonstrated that magnetite nanoparticles were successfully loaded with each waste. In addition, was obtained a double functionalization of the eggshell particles with ash and magnetite particles. As a result of this, the EFM surface area substantially increased, as confirmed by BET. A comprehensive characterization (BET, FT-IR, SEM, XRD and TGA) was performed to study the properties of this newly engineered adsorbent. Batch experiments were conducted to investigate the influence of different reaction parameters: temperature, pH, contact time, dosage adsorbent, initial concentration. Results showed that cadmium adsorption reached equilibrium in 120 min., at pH 6.5, for 0.25 g of adsorbent. The maximum efficiency was 99.9%. The adsorption isotherms research displayed that the Cd2+ adsorption fitted on the Freundlich model indicated a multi-molecular layer adsorption process. In addition, the thermodynamic study (ΔG < 0, ΔH > 0; ΔS > 0) shows that cadmium adsorption is a spontaneous and endothermic process. The adsorbent kinetic study was described with the pseudo-second-order model indicating a chemisorption mechanism. Desorption results showed that the nano-engineered adsorbent (EFM) can be reused. These data confirmed the possibility to enrich relevant theoretical knowledge in the field of waste recovery for obtaining newly designed adsorbents, performant and inexpensive for wastewater remediation.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Animals , Cadmium/chemistry , Coal Ash , Egg Shell , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
4.
Materials (Basel) ; 14(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34576551

ABSTRACT

2,2'-thiobisethanol dimethacrylate/ethylene glycol dimethacrylate copolymer (coP-TEDMA/EGDMA) was used as a sorbent for gold recovery from residual solutions resulting from the electroplating industry. Firstly, synthesized material was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy. The sorption process mechanism was evidenced on the basis of kinetic, thermodynamic and equilibrium studies. To highlight this, the influence of solution pH, temperature and gold initial concentration on maximum sorption capacity was studied. The obtained experimental data were modeled using Langmuir, Freundlich and Sips sorption isotherms, and it was observed that the Sips one was better for describing the studied sorption process. Kinetic data were fitted using pseudo-first-order and pseudo-second-order kinetic models. Of these models, the studied process was better described by the pseudo-second-order model. The thermodynamic parameters free Gibbs energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were evaluated on the basis of the van't Hoff equation. On the basis of the thermodynamic study, it was concluded that gold recovery on coP-TEDMA/EGDMA is a spontaneous and endothermic process.

6.
Materials (Basel) ; 14(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442892

ABSTRACT

Reducing the costs associated with water management, improving water quality and the environment are fundamental requirements of sustainable development. Maintaining the optimal level of phosphorus has a direct impact on water quality and the biological system. Current methods used in tertiary wastewater treatment for phosphorus removal present several disadvantages that influence the final water processing cost. Therefore, it is essential for water quality and food safety to develop ecological, cheap and highly efficient materials. This study reported the first comparative assessment of three different types of materials (magnetic, semiconductors and composite) as environmentally friendly, cheap adsorbents for phosphorus removal from wastewater. Several experiments were done to investigate the influence of adsorbent type, dosage and contact time on the efficiency of the processes. The adsorption process was fast and equilibrium was reached within 150 min. We found that the phosphorus adsorption efficiency on of these materials was higher than the chemical method. The obtained results indicated that specific surface area directly influences the performance of the adsorption process. EDS analysis was used to analyze adsorbents composition and analyze the type and content of elements in the substrate before and after reaction with wastewater.

7.
Sensors (Basel) ; 21(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202616

ABSTRACT

Cybersecurity is an arms race, with both the security and the adversaries attempting to outsmart one another, coming up with new attacks, new ways to defend against those attacks, and again with new ways to circumvent those defences. This situation creates a constant need for novel, realistic cybersecurity datasets. This paper introduces the effects of using machine-learning-based intrusion detection methods in network traffic coming from a real-life architecture. The main contribution of this work is a dataset coming from a real-world, academic network. Real-life traffic was collected and, after performing a series of attacks, a dataset was assembled. The dataset contains 44 network features and an unbalanced distribution of classes. In this work, the capability of the dataset for formulating machine-learning-based models was experimentally evaluated. To investigate the stability of the obtained models, cross-validation was performed, and an array of detection metrics were reported. The gathered dataset is part of an effort to bring security against novel cyberthreats and was completed in the SIMARGL project.


Subject(s)
Computer Security , Machine Learning
8.
Toxics ; 9(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065249

ABSTRACT

Gold is one of the precious metals with multiple uses, whose deposits are much smaller than the global production needs. Therefore, extracting maximum gold quantities from industrial diluted solutions is a must. Am-L-GA is a new material, obtained by an Amberlite XAD7-type commercial resin, functionalized through saturation with L-glutamic acid, whose adsorption capacity has been proved to be higher than those of other materials utilized for gold adsorption. In this context, this article presents the results of a factorial design experiment for optimizing the gold recovery from residual solutions resulting from the electronics industry using Am-L-GA. Firstly, the material was characterized using atomic force microscopy (AFM), to emphasize the material's characteristics, essential for the adsorption quality. Then, the study showed that among the parameters taken into account in the analysis (pH, temperature, initial gold concentration, and contact time), the initial gold concentration in the solution plays a determinant role in the removal process and the contact time has a slightly positive effect, whereas the pH and temperature do not influence the adsorption capacity. The maximum adsorption capacity of 29.27 mg/L was obtained by optimizing the adsorption process, with the control factors having the following values: contact time ~106 min, initial Au(III) concentration of ~164 mg/L, pH = 4, and temperature of 25 °C. It is highlighted that the factorial design method is an excellent instrument to determine the effects of different factors influencing the adsorption process. The method can be applied for any adsorption process if it is necessary to reduce the number of experiments, to diminish the resources or time consumption, or for expanding the investigation domain above the experimental limits.

9.
Case Rep Dermatol ; 13(1): 222-229, 2021.
Article in English | MEDLINE | ID: mdl-34054457

ABSTRACT

Dermatomyositis (DM) and its variant, clinically amyopathic DM, are widely recognized entities. DM sine dermatitis, a variant without skin involvement, is less widely reported. DM with neither muscle nor skin manifestations has not been reported. We herein describe the first account of a patient with a myositis-specific antibody presenting with an array of clinical findings in the absence of both muscle and pathognomonic skin disease. This case report details the multidisciplinary assessment of an anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive individual with inflammatory polyarthropathy, mucocutaneous capillary changes, and evidence of interstitial lung disease but lacking overt skin and muscle disease. This presentation is paradoxically but appositely deemed to represent a unique form of DM, which may be best described as "amyopathic hypodermatitic dermatomyositis." Early recognition and documentation of these cases will help to characterize this variant in the future, determine its frequency, and guide management.

11.
Article in English | MEDLINE | ID: mdl-33352975

ABSTRACT

Effective recovery of palladium ions from acidic waste solutions is important due to palladium's intensive usage as a catalyst for different industrial processes and to the high price paid for its production from natural resources. In this paper, we test the ability of a new adsorbent, MgSiO3 functionalized by impregnation with DL-cysteine (cys), for palladium ion recovery from waste solutions. The Brunauer-Emmett-Teller (BET) surface area analysis, Barrett-Joyner-Halenda (BJH) pore size and volume analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and Fourier-Transformed Infrared (FTIR) spectroscopy have been performed to characterize this material. Firstly, the maximum adsorption capacity of the new obtained material, MgSiO3-cys, in batch, was studied. To establish the adsorption mechanism, the obtained experimental data were fitted using the Langmuir, Freundlich and Sips adsorption isotherms. Studies on the adsorption of palladium ions on the synthesized material were performed in a dynamic regime, in a fixed-bed column. The Pd(II) recovery mechanism in the dynamic column regime was established based on Bohart-Adams, Yoon-Nelson, Thomas, and Clark models. The obtained equilibrium adsorption capacity was 9.3 (mg g-1) in static regime (batch) and 3 (mg g-1) in dynamic regime (column). The models that best describe the Pd(II) recovery process for batch and column adsorption are Sips and Clark, respectively.


Subject(s)
Palladium , Water Pollutants, Chemical , Water Purification , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
12.
Article in English | MEDLINE | ID: mdl-32962235

ABSTRACT

The objective of this paper was to evaluate the potential of a new adsorbent material to recover Au (III) from real wastewater, in a column with a fixed bed in a dynamic regime. The material was obtained through functionalization, by impregnation of the commercial resin, Amberlite XAD 7 type, with L-glutamic acid, which has active groups -NH2 and -COOH. The goal of the experiments was to follow the correlation of fixed-bed column specific adsorption parameters (the effluent volume, the amounts of adsorbent, heights of the adsorbent layer in column) with the time necessary to cross the column. The experimental data obtained were modeled, using the Bohart-Adams, Yoon-Nelson Thomas and Clark models, to establish the mechanism of the Au (III) recovery process, in a dynamic regime. Also, we established the number of cycles for adsorption-desorption for which the new material can be used. We used 5% HNO3 (5%) as desorption agent in five adsorption-desorption cycles, until the process was no longer efficient. The degree of desorption varied between 84% and 34% from cycle 1 to cycle 5.


Subject(s)
Water Pollutants, Chemical , Water Purification , Acrylic Resins , Adsorption , Gold , Polystyrenes , Resins, Synthetic
13.
Sci Rep ; 9(1): 8757, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217435

ABSTRACT

The main purpose of this paper was to obtain a material with efficient adsorbing properties and selectivity, to recover the gold (III) from residual diluted solutions resulted from the electroplating process. In this regard, a material was obtained by physico-chemical functionalization of a chemically inert support with functional groups of nitrogen and carboxyl. As a source of functional groups glutamic acid was used, and Amberlite XAD7 type acrylic resin was used as solid support. In order to establish the mechanism of the adsorption process, kinetic, thermodynamic and equilibrium studies were performed. The maximum adsorption capacity of the material has been established, and a gold (III) recovery process has been proposed using thermal decomposition of the exhausted adsorbed material. Main objective of this study was to evaluate an environmental friendly adsorbent material to recover gold from secondary industrial sources.

14.
Diabetes ; 67(1): 110-119, 2018 01.
Article in English | MEDLINE | ID: mdl-29074598

ABSTRACT

Diabetes-induced visual dysfunction is associated with significant neuroretinal cell death. The current study was designed to investigate the role of the Protein Regulated in Development and DNA Damage Response 1 (REDD1) in diabetes-induced retinal cell death and visual dysfunction. We recently demonstrated that REDD1 protein expression was elevated in response to hyperglycemia in the retina of diabetic rodents. REDD1 is an important regulator of Akt and mammalian target of rapamycin and as such plays a key role in neuronal function and survival. In R28 retinal cells in culture, hyperglycemic conditions enhanced REDD1 protein expression concomitant with caspase activation and cell death. By contrast, in REDD1-deficient R28 cells, neither hyperglycemic conditions nor the absence of insulin in culture medium were sufficient to promote cell death. In the retinas of streptozotocin-induced diabetic mice, retinal apoptosis was dramatically elevated compared with nondiabetic controls, whereas no difference was observed in diabetic and nondiabetic REDD1-deficient mice. Electroretinogram abnormalities observed in b-wave and oscillatory potentials of diabetic wild-type mice were also absent in REDD1-deficient mice. Moreover, diabetic wild-type mice exhibited functional deficiencies in visual acuity and contrast sensitivity, whereas diabetic REDD1-deficient mice had no visual dysfunction. The results support a role for REDD1 in diabetes-induced retinal neurodegeneration.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Cell Line , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Enzyme-Linked Immunosorbent Assay , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Retina/metabolism , Retina/pathology , Transcription Factors/genetics
15.
Invest Ophthalmol Vis Sci ; 57(3): 1327-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26998719

ABSTRACT

PURPOSE: The translational repressor 4E-BP1 interacts with the mRNA cap-binding protein eIF4E and thereby promotes cap-independent translation of mRNAs encoding proteins that contribute to diabetic retinopathy. Interaction of 4E-BP1 with eIF4E is enhanced in the retina of diabetic rodents, at least in part, as a result of elevated 4E-BP1 protein expression. In the present study, we examined the role of 4E-BP1 in diabetes-induced visual dysfunction, as well as the mechanism whereby hyperglycemia promotes 4E-BP1 expression. METHODS: Nondiabetic and diabetic wild-type and 4E-BP1/2 knockout mice were evaluated for visual function using a virtual optomotor test (Optomotry). Retinas were harvested from nondiabetic and type 1 diabetic mice and analyzed for protein abundance and posttranslational modifications. Similar analyses were performed on cells in culture exposed to hyperglycemic conditions or an O-GlcNAcase inhibitor (Thiamet G [TMG]). RESULTS: Diabetes-induced visual dysfunction was delayed in mice deficient of 4E-BP1/2 as compared to controls. 4E-BP1 protein expression was enhanced by hyperglycemia in the retina of diabetic rodents and by hyperglycemic conditions in retinal cells in culture. A similar elevation in 4E-BP1 expression was observed with TMG. The rate of 4E-BP1 degradation was significantly prolonged by either hyperglycemic conditions or TMG. A PEST motif in the C-terminus of 4E-BP1 regulated polyubiquitination, turnover, and binding of an E3 ubiquitin ligase complex containing CUL3. CONCLUSIONS: The findings support a model whereby elevated 4E-BP1 expression observed in the retina of diabetic rodents is the result of O-GlcNAcylation of 4E-BP1 within its PEST motif.


Subject(s)
Carrier Proteins/genetics , Diabetes Mellitus, Experimental , Diabetic Retinopathy/physiopathology , Gene Expression Regulation , Phosphoproteins/genetics , RNA/genetics , Retina/physiopathology , Visual Acuity , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/biosynthesis , Cell Cycle Proteins , Cells, Cultured , Diabetic Retinopathy/etiology , Diabetic Retinopathy/genetics , Eukaryotic Initiation Factors , Immunoprecipitation , Male , Mice , Mice, Knockout , Peptide Initiation Factors/metabolism , Phosphoproteins/biosynthesis , Phosphorylation , Repressor Proteins , Retina/metabolism , Retina/pathology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL