Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Nat Commun ; 12(1): 24, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33402679

ABSTRACT

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.


Subject(s)
Anorexia Nervosa/genetics , Blood Glucose/metabolism , Glucose Intolerance/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Resistance/genetics , Insulin/blood , Kruppel-Like Transcription Factors/genetics , Adult , Anorexia Nervosa/blood , Anorexia Nervosa/ethnology , Anorexia Nervosa/physiopathology , Fasting/blood , Female , Gene Expression , Genetic Loci , Genome-Wide Association Study , Glucose Intolerance/blood , Glucose Intolerance/ethnology , Glucose Intolerance/physiopathology , Humans , Insulin Receptor Substrate Proteins/blood , Kruppel-Like Transcription Factors/blood , Male , Middle Aged , Phenotype , Sex Characteristics , Sex Factors , Waist-Hip Ratio , White People
3.
Circ Genom Precis Med ; 13(6): e002769, 2020 12.
Article in English | MEDLINE | ID: mdl-33321069

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is accelerated in subjects with type 2 diabetes mellitus (T2D). METHODS: To test whether this reflects differential genetic influences on CAD risk in subjects with T2D, we performed a systematic assessment of genetic overlap between CAD and T2D in 66 643 subjects (27 708 with CAD and 24 259 with T2D). Variants showing apparent association with CAD in stratified analyses or evidence of interaction were evaluated in a further 117 787 subjects (16 694 with CAD and 11 537 with T2D). RESULTS: None of the previously characterized CAD loci was found to have specific effects on CAD in T2D individuals, and a genome-wide interaction analysis found no new variants for CAD that could be considered T2D specific. When we considered the overall genetic correlations between CAD and its risk factors, we found no substantial differences in these relationships by T2D background. CONCLUSIONS: This study found no evidence that the genetic architecture of CAD differs in those with T2D compared with those without T2D.


Subject(s)
Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Case-Control Studies , Genome-Wide Association Study , Humans , Meta-Analysis as Topic , Polymorphism, Genetic , Risk Factors
4.
Am J Nephrol ; 49(3): 193-202, 2019.
Article in English | MEDLINE | ID: mdl-30808845

ABSTRACT

BACKGROUND: Serum urea level is a heritable trait, commonly used as a diagnostic marker for kidney function. Genome-wide association studies (GWAS) in East-Asian populations identified a number of genetic loci related to serum urea, however there is a paucity of data for European populations. METHODS: We performed a two-stage meta-analysis of GWASs on serum urea in 13,312 participants, with independent replication in 7,379 participants of European ancestry. RESULTS: We identified 6 genome-wide significant single nucleotide polymorphisms (SNPs) in or near 6 loci, of which 2 were novel (POU2AF1 and ADAMTS9-AS2). Replication of East-Asian and Scottish data provided evidence for an additional 8 loci. SNPs tag regions previously associated with anthropometric traits, serum magnesium, and urinary albumin-to-creatinine ratio, as well as expression quantitative trait loci for genes preferentially expressed in kidney and gastro-intestinal tissues. CONCLUSIONS: Our findings provide insights into the genetic underpinnings of urea metabolism, with potential relevance to kidney function.


Subject(s)
Kidney/metabolism , Quantitative Trait Loci , Urea/blood , White People/genetics , Computational Biology , Genome-Wide Association Study , Humans , Metabolic Networks and Pathways/genetics , Polymorphism, Single Nucleotide , Reference Values , Urea/metabolism
5.
PLoS One ; 12(12): e0186456, 2017.
Article in English | MEDLINE | ID: mdl-29236708

ABSTRACT

BACKGROUND: Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences. OBJECTIVE: To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption. DESIGN: We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts. RESULTS: Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA. CONCLUSIONS: These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Genome-Wide Association Study , Seafood , Adult , Aged , Cohort Studies , Europe , Female , Humans , Male , Middle Aged , United States , White People
6.
PLoS Genet ; 13(6): e1006812, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28614350

ABSTRACT

Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman's ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann-Whitney = 1.46×10-5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10-9 and 8.52×10-7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Gene-Environment Interaction , Obesity/genetics , Body Mass Index , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Obesity/blood , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Risk Factors , Smoking/genetics , White People/genetics
7.
Sci Rep ; 7: 44846, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28349935

ABSTRACT

The presence of autoantibodies usually precedes autoimmune disease, but is sometimes considered an incidental finding with no clinical relevance. The prevalence of immune-mediated diseases was studied in a group of individuals from the Estonian Genome Project (n = 51,862), and 6 clinically significant autoantibodies were detected in a subgroup of 994 (auto)immune-mediated disease-free individuals. The overall prevalence of individuals with immune-mediated diseases in the primary cohort was 30.1%. Similarly, 23.6% of the participants in the disease-free subgroup were seropositive for at least one autoantibody. Several phenotypic parameters were associated with autoantibodies. The results suggest that (i) immune-mediated diseases are diagnosed in nearly one-third of a random European population, (ii) 6 common autoantibodies are detectable in almost one-third of individuals without diagnosed autoimmune diseases, (iii) tissue non-specific autoantibodies, especially at high levels, may reflect preclinical disease in symptom-free individuals, and (iv) the incidental positivity of anti-TPO in men with positive familial anamnesis of maternal autoimmune disease deserves further medical attention. These results encourage physicians to evaluate autoantibodies in addition to treating a variety of patient health complaints to detect autoimmune-mediated disease early.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/epidemiology , Autoimmune Diseases/immunology , Adolescent , Adult , Aged , Asymptomatic Diseases , Cross-Sectional Studies , Europe/epidemiology , Female , Humans , Male , Middle Aged , Phenotype , Population Surveillance , Prevalence , Risk Factors , Young Adult
8.
J Am Soc Nephrol ; 28(3): 981-994, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27920155

ABSTRACT

Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10-7), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10-8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.


Subject(s)
Exome/genetics , Glomerular Filtration Rate/genetics , Kidney/embryology , Protein Tyrosine Phosphatases/genetics , Proto-Oncogene Proteins/genetics , Son of Sevenless Proteins/genetics , Animals , Genetic Loci , Genome-Wide Association Study , Humans , Zebrafish
10.
Sci Rep ; 6: 35278, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731410

ABSTRACT

In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.


Subject(s)
Chromosomes, Human, X , Coronary Artery Disease/genetics , Cohort Studies , Female , Humans , Internationality , Male
11.
Nat Genet ; 48(10): 1151-1161, 2016 10.
Article in English | MEDLINE | ID: mdl-27618447

ABSTRACT

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.


Subject(s)
Blood Pressure/genetics , Genetic Variation , Hypertension/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans
14.
Am J Hum Genet ; 99(1): 8-21, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27346685

ABSTRACT

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Subject(s)
Erythrocytes/cytology , Erythropoiesis/genetics , Exome/genetics , Genetic Pleiotropy , Genetic Variation/genetics , Genotype , Black or African American/genetics , Allelic Imbalance , Erythrocyte Indices , Erythrocytes/metabolism , Gene Frequency , Hematocrit , Hemoglobins/genetics , Humans , Quantitative Trait Loci/genetics
15.
Am J Hum Genet ; 99(1): 22-39, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27346689

ABSTRACT

White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of âˆ¼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.


Subject(s)
Exome/genetics , Genetic Loci/genetics , Genetic Pleiotropy , Genome-Wide Association Study , Immune System Diseases/genetics , Leukocytes/cytology , Blood Cell Count , Humans , Quality Control
16.
Eur J Hum Genet ; 24(10): 1488-95, 2016 10.
Article in English | MEDLINE | ID: mdl-27142678

ABSTRACT

Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10(-08), 6.59 × 10(-)(08) and 9.17 × 10(-)(08)). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10(-)(02), 7.0 × 10(-)(03) and 2.5 × 10(-)(03); combined meta-analysis P-values=5.5 × 10(-07), 5.4 × 10(-07) and 1.0 × 10(-07)). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10(-316)) and the central nervous system (P-value=7.5 × 10(-)(321)). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values<2.9 × 10(-11)) that are crucial in triggering the onset of sleep. To conclude, in this first large-scale GWAS of sleep latency we report a novel association of variants in RBFOX3 gene. Further, a functional prediction of RBFOX3 supports the involvement of RBFOX3 with sleep latency.


Subject(s)
Antigens, Nuclear/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Sleep/genetics , Brain/metabolism , Humans , Synaptic Transmission/genetics
17.
Nature ; 533(7604): 539-42, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225129

ABSTRACT

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.


Subject(s)
Brain/metabolism , Educational Status , Fetus/metabolism , Gene Expression Regulation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Bipolar Disorder/genetics , Cognition , Computational Biology , Gene-Environment Interaction , Humans , Molecular Sequence Annotation , Schizophrenia/genetics , United Kingdom
18.
Nat Genet ; 48(6): 624-33, 2016 06.
Article in English | MEDLINE | ID: mdl-27089181

ABSTRACT

Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.


Subject(s)
Anxiety Disorders/genetics , Depression/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Bayes Theorem , Humans , Neuroticism , Phenotype
19.
Nat Commun ; 7: 11122, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27005778

ABSTRACT

Genome-wide association studies have identified numerous loci linked with complex diseases, for which the molecular mechanisms remain largely unclear. Comprehensive molecular profiling of circulating metabolites captures highly heritable traits, which can help to uncover metabolic pathophysiology underlying established disease variants. We conduct an extended genome-wide association study of genetic influences on 123 circulating metabolic traits quantified by nuclear magnetic resonance metabolomics from up to 24,925 individuals and identify eight novel loci for amino acids, pyruvate and fatty acids. The LPA locus link with cardiovascular risk exemplifies how detailed metabolic profiling may inform underlying aetiology via extensive associations with very-low-density lipoprotein and triglyceride metabolism. Genetic fine mapping and Mendelian randomization uncover wide-spread causal effects of lipoprotein(a) on overall lipoprotein metabolism and we assess potential pleiotropic consequences of genetically elevated lipoprotein(a) on diverse morbidities via electronic health-care records. Our findings strengthen the argument for safe LPA-targeted intervention to reduce cardiovascular risk.


Subject(s)
Cardiovascular Diseases/genetics , Lipoprotein(a)/genetics , Metabolomics/methods , Adult , Aged , Cardiovascular Diseases/metabolism , Chromosome Mapping , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lipoproteins, VLDL/metabolism , Magnetic Resonance Spectroscopy , Male , Mendelian Randomization Analysis , Middle Aged , Triglycerides/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...