Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(3)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35336239

ABSTRACT

Gut microbiota are involved in both host health and disease and can be stratified based on bacteriological composition. However, gut microbiota clustering data are limited for Asians. In this study, fecal microbiota of 1803 Japanese subjects, including 283 healthy individuals, were analyzed by 16S rRNA sequencing and clustered using two models. The association of various diseases with each community type was also assessed. Five and fifteen communities were identified using partitioning around medoids (PAM) and the Dirichlet multinominal mixtures model, respectively. Bacteria exhibiting characteristically high abundance among the PAM-identified types were of the family Ruminococcaceae (Type A) and genera Bacteroides, Blautia, and Faecalibacterium (Type B); Bacteroides, Fusobacterium, and Proteus (Type C); and Bifidobacterium (Type D), and Prevotella (Type E). The most noteworthy community found in the Japanese subjects was the Bifidobacterium-rich community. The odds ratio based on type E, which had the largest population of healthy subjects, revealed that other types (especially types A, C, and D) were highly associated with various diseases, including inflammatory bowel disease, functional gastrointestinal disorder, and lifestyle-related diseases. Gut microbiota community typing reproducibly identified organisms that may represent enterotypes peculiar to Japanese individuals and that are partly different from those of indivuals from Western countries.

2.
Nutrients ; 12(8)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764462

ABSTRACT

Metabolic syndrome, whose main diagnostic component is obesity, is a risk factor for lifestyle-related diseases, type 2 diabetes, and cardiovascular disease. Diet is known to affect the prevalence of metabolic syndrome. However, the effect of diet on metabolic syndrome in Japanese subjects has not been thoroughly explored. In the present study, we investigated the effect of carotenoid-rich vegetables, particularly lycopene- and lutein-rich vegetables, on the metabolic syndrome in obese Japanese men. We conducted an 8-week long randomized, double-blinded, controlled clinical trial in which, 28 middle-aged (40 ≤ age < 65) Japanese men with high body mass index (BMI ≥ 25) were randomized into four dietary groups: high lycopene + high lutein (HLyHLu), high lycopene + low lutein (HLyLLu), low lycopene + high lutein (LLyHLu), and low lycopene + low lutein (LLyLLu). Our results showed that daily beverage-intake increased the plasma levels of carotenoids without adverse effects, and the visceral fat level was significantly decreased in all the groups. The waist circumference was significantly decreased only in the HLyLLu group, whereas the CoQ10 oxidation rate was decreased in all the groups. The gene expression profiles of whole blood samples before and after ingestion differed only in the LLyLLu group, indicating the effect of carotenoids on gene expression profile. In conclusion, our results suggest that dietary uptake of carotenoid-rich vegetables increases their concentration in blood and reduces the intra-abdominal visceral fat.


Subject(s)
Adiposity/drug effects , Carotenoids/administration & dosage , Metabolic Syndrome/diet therapy , Obesity/diet therapy , Vegetables , Adult , Beverages , Body Mass Index , Carotenoids/blood , Diet , Double-Blind Method , Humans , Intra-Abdominal Fat/drug effects , Japan , Lutein/administration & dosage , Lutein/analysis , Lycopene/administration & dosage , Lycopene/analysis , Male , Metabolic Syndrome/complications , Middle Aged , Obesity/complications , beta Carotene/analysis
3.
J Environ Sci Health B ; 45(5): 399-407, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20512730

ABSTRACT

Dechlorination of all mono- and dichlorophenol isomers in anaerobic sediment samples of estuarine Lake Shinji and Lake Nakaumi was examined to characterize the chlorophenol-dechlorinating microbial communities in the environments with different salinity levels. Dechlorination was observed only in 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 2,6-dichlorophenol (2,6-DCP), and in 2-CP and 2,6-DCP in the Lake Shinji and Nakaumi sediment, respectively. In the sediment of Lake Shinji, the highest activity was observed without adding sodium chloride and sulfate, whereas in the Lake Nakaumi sediment, the highest activity was at 0.7 % of sodium chloride and 6.0 mM of sodium sulfate. The chlorophenols were degraded to benzoate via phenol in both sediments under methanogenic conditions. Benzoate then disappeared from the cultures. All microbial consortia enriched with each monochlorophenol dechlorinated 2-CP, but showed different substrate specificities for dichlorophenols as follows: 2-CP-enriched consortium dechlorinated 2,3-dichlorophenol and 2,6-DCP, 3-CP-enriched consortium dechlorinated all dichlorophenol isomers, and 4-chlorophenol-enriched consortium dechlorinated 2,4-dichlorophenol and 2,6-DCP. Maintenance of the population by halorespiration was suggested in the dechlorination of 2-CP.


Subject(s)
Chlorine/metabolism , Chlorophenols/metabolism , Fresh Water , Geologic Sediments/chemistry , Water Pollutants, Chemical/metabolism , Anaerobiosis , Benzoates/metabolism , Chlorine/chemistry , Geologic Sediments/microbiology , Japan , Methane/metabolism , Sodium Chloride/chemistry , Sulfates/chemistry , Time Factors , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...