Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Health Action ; 17(1): 2326253, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38683158

ABSTRACT

Effective and sustainable strategies are needed to address the burden of preventable deaths among children under-five in resource-constrained settings. The Tools for Integrated Management of Childhood Illness (TIMCI) project aims to support healthcare providers to identify and manage severe illness, whilst promoting resource stewardship, by introducing pulse oximetry and clinical decision support algorithms (CDSAs) to primary care facilities in India, Kenya, Senegal and Tanzania. Health impact is assessed through: a pragmatic parallel group, superiority cluster randomised controlled trial (RCT), with primary care facilities randomly allocated (1:1) in India to pulse oximetry or control, and (1:1:1) in Tanzania to pulse oximetry plus CDSA, pulse oximetry, or control; and through a quasi-experimental pre-post study in Kenya and Senegal. Devices are implemented with guidance and training, mentorship, and community engagement. Sociodemographic and clinical data are collected from caregivers and records of enrolled sick children aged 0-59 months at study facilities, with phone follow-up on Day 7 (and Day 28 in the RCT). The primary outcomes assessed for the RCT are severe complications (mortality and secondary hospitalisations) by Day 7 and primary hospitalisations (within 24 hours and with referral); and, for the pre-post study, referrals and antibiotic. Secondary outcomes on other aspects of health status, hypoxaemia, referral, follow-up and antimicrobial prescription are also evaluated. In all countries, embedded mixed-method studies further evaluate the effects of the intervention on care and care processes, implementation, cost and cost-effectiveness. Pilot and baseline studies started mid-2021, RCT and post-intervention mid-2022, with anticipated completion mid-2023 and first results late-2023. Study approval has been granted by all relevant institutional review boards, national and WHO ethical review committees. Findings will be shared with communities, healthcare providers, Ministries of Health and other local, national and international stakeholders to facilitate evidence-based decision-making on scale-up.Study registration: NCT04910750 and NCT05065320.


Pulse oximetry and clinical decision support algorithms show potential for supporting healthcare providers to identify and manage severe illness among children under-five attending primary care in resource-constrained settings, whilst promoting resource stewardship but scale-up has been hampered by evidence gaps.This study design article describes the largest scale evaluation of these interventions to date, the results of which will inform country- and global-level policy and planning .


Subject(s)
Algorithms , Decision Support Systems, Clinical , Oximetry , Humans , Infant , Child, Preschool , Infant, Newborn , Kenya , Primary Health Care/organization & administration , Senegal , India , Tanzania
2.
PLOS Digit Health ; 2(1): e0000170, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36812607

ABSTRACT

Electronic clinical decision support algorithms (CDSAs) have been developed to address high childhood mortality and inappropriate antibiotic prescription by helping clinicians adhere to guidelines. Previously identified challenges of CDSAs include their limited scope, usability, and outdated clinical content. To address these challenges we developed ePOCT+, a CDSA for the care of pediatric outpatients in low- and middle-income settings, and the medical algorithm suite (medAL-suite), a software for the creation and execution of CDSAs. Following the principles of digital development, we aim to describe the process and lessons learnt from the development of ePOCT+ and the medAL-suite. In particular, this work outlines the systematic integrative development process in the design and implementation of these tools required to meet the needs of clinicians to improve uptake and quality of care. We considered the feasibility, acceptability and reliability of clinical signs and symptoms, as well as the diagnostic and prognostic performance of predictors. To assure clinical validity, and appropriateness for the country of implementation the algorithm underwent numerous reviews by clinical experts and health authorities from the implementing countries. The digitalization process involved the creation of medAL-creator, a digital platform which allows clinicians without IT programming skills to easily create the algorithms, and medAL-reader the mobile health (mHealth) application used by clinicians during the consultation. Extensive feasibility tests were done with feedback from end-users of multiple countries to improve the clinical algorithm and medAL-reader software. We hope that the development framework used for developing ePOCT+ will help support the development of other CDSAs, and that the open-source medAL-suite will enable others to easily and independently implement them. Further clinical validation studies are underway in Tanzania, Rwanda, Kenya, Senegal, and India.

SELECTION OF CITATIONS
SEARCH DETAIL
...