Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Top Spinal Cord Inj Rehabil ; 29(2): 34-42, 2023.
Article in English | MEDLINE | ID: mdl-37235195

ABSTRACT

Background: Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events. Objectives: The aim of this study was to determine whether a subset of vascular-related miRNAs is differentially expressed in EMVs isolated from adults with SCI. Methods: We assessed eight adults with tetraplegia (7 male/1 female; age: 46±4 years; time since injury: 26±5 years) and eight uninjured (6 male/2 female; age: 39±3 years). Circulating EMVs were isolated, enumerated, and collected from plasma by flow cytometry. The expression of vascular-related miRNAs in EMVs was assessed by RT-PCR. Results: Circulating EMV levels were significantly higher (~130%) in adults with SCI compared with uninjured adults. The expression profile of miRNAs in EMVs from adults with SCI were significantly different than uninjured adults and were pathologic in nature. Expression of miR-126, miR-132, and miR-Let-7a were lower (~100-150%; p < .05), whereas miR-30a, miR-145, miR-155, and miR-216 were higher (~125-450%; p < .05) in EMVs from adults with SCI. Conclusion: This study is the first examination of EMV miRNA cargo in adults with SCI. The cargo signature of vascular-related miRNAs studied reflects a pathogenic EMV phenotype prone to induce inflammation, atherosclerosis, and vascular dysfunction. EMVs and their miRNA cargo represent a novel biomarker of vascular risk and a potential target for intervention to alleviate vascular-related disease after SCI.


Subject(s)
Atherosclerosis , Cell-Derived Microparticles , MicroRNAs , Spinal Cord Injuries , Humans , Male , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Pilot Projects , Spinal Cord Injuries/metabolism , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology
2.
Am J Physiol Heart Circ Physiol ; 323(6): H1311-H1322, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36367686

ABSTRACT

Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.


Subject(s)
Autonomic Nervous System Diseases , Cardiovascular Diseases , Cervical Cord , Spinal Cord Injuries , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Carotid Artery, Common , Carotid Arteries , Middle Cerebral Artery , Spinal Cord Injuries/complications
3.
Appl Physiol Nutr Metab ; 47(3): 269-277, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34739759

ABSTRACT

Individuals with cervical spinal cord injury (SCI) are at an increased risk for cardiovascular disease. Exercise is well-established for preventing cardiovascular disease; however, there are limited straightforward and safe exercise approaches for increasing the activity of the cardiorespiratory system after cervical SCI. The objective of this study was to investigate the cardiorespiratory response to passive leg cycling in people with cervical SCI. Beat-by-beat blood pressure, heart rate, and cerebral blood flow were measured before and throughout 10 minutes of cycling in 11 people with SCI. Femoral artery flow-mediated dilation was also assessed before and immediately after passive cycling. Safety was monitored throughout all study visits. Passive cycling elevated systolic blood pressure (5 ± 2 mm Hg), mean arterial pressure (5 ± 3 mm Hg), stroke volume (2.4 ± 0.8 mL), heart rate (2 ± 1 beats/min) and cardiac output (0.3 ± 0.07 L/min; all p < 0.05). Minute ventilation (0.67 ± 0.23 L/min), tidal volume (70 ± 30 mL) and end-tidal PO2 (2.6 ± 1.23 mm Hg) also increased (all p < 0.05). Endothelial function was improved immediately after exercise (1.62 ± 0.13%, p < 0.01). Passive cycling resulted in an incidence of autonomic dysreflexia. Therefore, passive leg cycling increased the activity of the cardiorespiratory system and improved endothelial function, indicating it may be a beneficial exercise intervention for the cardiovascular and respiratory systems in people with cervical SCI. Novelty: Passive leg cycling increases the activity of the cardiorespiratory system and improves markers of cardiovascular health in cervical SCI. Passive leg cycling exercise is an effective, low-cost, practical, alternative exercise modality for people with cervical SCI.


Subject(s)
Leg , Spinal Cord Injuries , Bicycling , Exercise/physiology , Heart Rate/physiology , Humans , Quadriplegia , Spinal Cord Injuries/complications
4.
Exp Physiol ; 105(9): 1540-1549, 2020 09.
Article in English | MEDLINE | ID: mdl-32618374

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT: Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. FIO2 , 0.10) and hyperoxia (i.e. FIO2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.


Subject(s)
Cerebrovascular Circulation , Diving/physiology , Hyperoxia/physiopathology , Hypoxia/physiopathology , Neurovascular Coupling , Adult , Humans , Male , Middle Aged , Vasodilation
5.
Clin Sci (Lond) ; 134(7): 777-789, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32219341

ABSTRACT

People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were ∼65% lower and ∼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.


Subject(s)
Cell-Derived Microparticles/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Spinal Cord Injuries/blood , Adult , Case-Control Studies , Cell-Derived Microparticles/pathology , Cells, Cultured , Cytokines/metabolism , Female , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Phosphorylation , Spinal Cord Injuries/pathology , Tissue Plasminogen Activator/metabolism
6.
Can J Physiol Pharmacol ; 98(2): 124-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31505129

ABSTRACT

The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41- and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.


Subject(s)
Blood Vessels/physiopathology , Breath Holding , Diving/adverse effects , Cell-Derived Microparticles/metabolism , Humans , Time Factors , Vasodilation
7.
Neurology ; 93(24): e2181-e2191, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31694923

ABSTRACT

OBJECTIVE: To determine the population-level odds of individuals with spinal cord injury (SCI) experiencing fatigue and sleep apnea, to elucidate relationships with level and severity of injury, and to examine associations with abnormal cerebrovascular responsiveness. METHODS: We used population-level data, meta-analyses, and primary physiologic assessments to provide a large-scale integrated assessment of sleep-related complications after SCI. Population-level and meta-analyses included more than 60,000 able-bodied individuals and more than 1,800 individuals with SCI. Physiologic assessments were completed on a homogenous sample of individuals with cervical SCI and matched controls. We examined the prevalence of (1) self-reported chronic fatigue, (2) clinically identified sleep apnea, and 3) cerebrovascular responsiveness to changing CO2. RESULTS: Logistic regression revealed a 7-fold elevated odds of chronic fatigue after SCI (odds ratio [OR] 7.9, 95% confidence interval [CI] 3.5-16.2), and that fatigue and trouble sleeping are correlated with the level and severity of injury. We further show that those with SCI experience elevated risk of clinically defined sleep-disordered breathing in more than 600 individuals with SCI (pooled OR 3.1, 95% CI 1.3-7.5). We confirmed that individuals with SCI experience a high rate of clinically defined sleep apnea using primary polysomnography assessments. We then provide evidence using syndromic analysis that sleep-disordered breathing is a factor strongly associated with impaired cerebrovascular responsiveness to CO2 in patients with SCI. CONCLUSIONS: Individuals with SCI have an increased prevalence of sleep-disordered breathing, which may partially underpin their increased risk of stroke. There is thus a need to integrate sleep-related breathing examinations into routine care for individuals with SCI.


Subject(s)
Sleep Apnea Syndromes/epidemiology , Spinal Cord Injuries/complications , Adult , Aged , Female , Humans , Male , Middle Aged , Prevalence , Sleep Apnea Syndromes/etiology
8.
Adv Ther ; 36(11): 3196-3210, 2019 11.
Article in English | MEDLINE | ID: mdl-31512143

ABSTRACT

INTRODUCTION: Therapeutic effects of cannabidiol (CBD) in specialized populations continue to emerge. Despite supra-physiological dosing being shown to be tolerable in various pathologies, optimization of CBD absorption has obvious benefits for general health and recreational usage. Our objectives were to: (1) to investigate a joint pharmacokinetic-physiological time course of multiple recreational-equivalent (< 100 mg) dosages of oral CBD in young healthy adults and (2) evaluate a newly developed technology (TurboCBD™) for the enhanced delivery of CBD. METHODS: In a double-blinded, placebo-controlled, cross-over design, 12 participants received placebo, generic 45 or 90 mg of CBD, or TurboCBD™ delivery technology capsules on five separate occasions. RESULTS: Although there were no differences in the 45 mg conditions, circulating CBD levels were higher with the TurboCBD™ 90 mg group at both 90 (+ 86%) and 120 (+ 65%) min compared with the 90 mg control (p < 0.05). Total area under the curve tended to be higher with TurboCBD™ 90 mg compared with 90 mg (10,865 ± 6322 ng ml-1 vs. 7114 ± 2978 ng ml-1; p = 0.088). Only the TurboCBD™ 90 mg dose was elevated greater than placebo at 30 min (p = 0.017) and remained elevated at 4 h (p = 0.002). CONCLUSION: Consistent with higher bioavailability, TurboCBD™ 90 mg at the peak CBD concentration was associated with an increase in cerebral perfusion and slight reduction in blood pressure compared with baseline and the 90 mg control. Further studies are needed to establish the mechanisms of action of this technology and to explore the therapeutic potential of acute and chronic dosing on more at-risk populations. FUNDING: Lexaria Bioscience Corp. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT03295903.


Subject(s)
Administration, Oral , Biological Availability , Cannabidiol/administration & dosage , Cannabidiol/blood , Cannabidiol/pharmacokinetics , Capsules/administration & dosage , Capsules/pharmacokinetics , Adult , Cross-Over Studies , Double-Blind Method , Healthy Volunteers , Humans , Male , Placebo Effect , Young Adult
9.
Spinal Cord ; 57(11): 979-984, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31289366

ABSTRACT

STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.


Subject(s)
Cerebrovascular Circulation/physiology , Cervical Vertebrae/diagnostic imaging , Hyperthermia, Induced/methods , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Adult , Cervical Vertebrae/injuries , Female , Humans , Hyperthermia, Induced/trends , Male , Middle Aged , Spinal Cord Injuries/therapy
10.
J Neurotrauma ; 36(9): 1487-1490, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30458117

ABSTRACT

The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) likely plays an important role in the prevention of stroke, which is three- to fourfold more common after spinal cord injury (SCI). Although the directional relationship between BP and cerebral blood flow (CBF) has traditionally been thought to travel solely from BP to CBF, a Cushing-like mechanism functioning in the inverse direction, in which changes in CBF influence BP, has recently been revealed using Granger causality analysis. Although both CBF buffering of BP and the Cushing-like mechanism are influenced by the sympathetic nervous system, we do not understand the impact of disruption of descending sympathetic pathways within the spinal cord, caused by cervical SCI on these regulatory systems. We hypothesized that people with cervical SCI would have greater BP to CBF transmission, as well as a reduced Cushing-like mechanism. The directional relationships between mean arterial BP (MAP; Finometer® PRO) and middle cerebral artery blood velocity (MCAv; transcranial Doppler) were assessed at rest in 14 cervical SCI subjects and 16 uninjured individuals using Granger causality analysis, while also accounting for end-tidal CO2 tension. Those with SCI exhibited 66% increased forward MAP→MCAv information transmission as compared with the uninjured group (p = 0.0003), indicating reduced cerebrovascular buffering of BP, and did not have a predominant backward Cushing-like MCAv→MAP phenotype. These results indicate that both forward and backward communication between BP and CBF are influenced by SCI, which may be associated with impaired cerebrovascular BP buffering after SCI as well as widespread BP instability.


Subject(s)
Blood Pressure/physiology , Cerebrovascular Circulation/physiology , Spinal Cord Injuries/physiopathology , Blood Flow Velocity/physiology , Female , Humans , Male
11.
Am J Physiol Heart Circ Physiol ; 316(3): H722-H733, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30575438

ABSTRACT

Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.


Subject(s)
E-Selectin/blood , Endothelium, Vascular/physiopathology , Heat-Shock Response , Spinal Cord Injuries/physiopathology , Adult , Arteries/diagnostic imaging , Biomarkers/blood , Cervical Vertebrae/injuries , Endothelium, Vascular/diagnostic imaging , Female , Hemorheology , Humans , Hyperthermia, Induced , Male , Microvessels/diagnostic imaging , Middle Aged
12.
Ugeskr Laeger ; 180(46)2018 Nov 12.
Article in Danish | MEDLINE | ID: mdl-30417823

ABSTRACT

The underwater environment challenges human physiology in a unique way. Prolonged exposure to extreme conditions of immersion and increased ambient pressure can lead to injury and even death. Breath-hold and diving with self-contained underwater breathing apparatus (SCUBA diving) pose acute stress predominantly on the cardiovascular and pulmonary system. Currently there is no evidence of long-term consequences of subclinical cardiovascular, neurological or pulmonary adverse effects, but diving has acute stresses on the human physiology. In this review, we aim to provide a basic understanding of the physiological changes related to diving and therapy in case of trauma.


Subject(s)
Cardiovascular System , Diving , Respiratory System , Humans
13.
Exp Physiol ; 103(8): 1170-1177, 2018 08.
Article in English | MEDLINE | ID: mdl-29978513

ABSTRACT

NEW FINDINGS: What is the central question of this study? How does oxygen therapy influence cerebral blood flow, cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients? What is the main finding and its importance? Oxygen therapy improves cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients. This improvement in cerebral oxygen delivery and neurovascular function might provide a physiological link between oxygen therapy and a reduced risk of cerebrovascular disease (e.g. stroke, mild cognitive impairment and dementia) in chronic obstructive pulmonary disease. ABSTRACT: We investigated the role of hypoxaemia in cerebral blood flow (CBF), oxygen delivery (CDO2 ) and neurovascular coupling (coupling of CBF to neural activity; NVC) in hypoxaemic chronic obstructive pulmonary disease (COPD) patients (n = 14). Resting CBF (duplex ultrasound), peripheral oxyhaemoglobin saturation (SpO2; pulse-oximetry) and NVC (transcranial Doppler) were assessed before and after a 20 min wash-in of supplemental oxygen (∼3 l min-1 ). The peripheral oxyhaemoglobin saturation increased from 91.0 ± 3.3 to 97.4 ± 3.0% (P < 0.01), whereas CBF was unaltered (593.0 ± 162.8 versus 590.1 ± 138.5 ml min-1 ; P = 0.91) with supplemental O2 . In contrast, both CDO2 (98.1 ± 25.7 versus 108.7 ± 28.4 ml dl-1 ; P = 0.02) and NVC were improved. Specifically, the posterior cerebral artery cerebrovascular conductance was increased to a greater extent after O2 normalization (+40%, from 20.4 ± 9.9 to 28.0 ± 10.4% increase in conductance; P = 0.04), whereas the posterior cerebral artery cerebrovascular resistance decreased to a greater extent during O2 normalization (+22%, from -16.7 ± 7.3 to -21.4 ± 6.6% decrease in resistance; P = 0.04). The cerebral vasculature of COPD patients appears insensitive to oxygen, because CBF was unaltered in response to O2 supplementation leading to improved CDO2 . In patients, the improvements in CDO2 and neurovascular function with supplemental O2 may underlie the cognitive benefits associated with O2 therapy.


Subject(s)
Cerebrovascular Circulation/physiology , Hypoxia/therapy , Oxygen/therapeutic use , Pulmonary Disease, Chronic Obstructive/therapy , Aged , Female , Humans , Hypoxia/complications , Hypoxia/physiopathology , Male , Middle Aged , Oximetry , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/physiopathology , Treatment Outcome
14.
Am J Physiol Heart Circ Physiol ; 314(5): H1108-H1114, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29600896

ABSTRACT

The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) is crucial to prevent stroke, the incidence of which is three- to fourfold elevated after spinal cord injury (SCI). Disruption of descending sympathetic pathways within the spinal cord due to cervical SCI may result in impaired cerebrovascular buffering. Only linear analyses of cerebrovascular buffering of BP, such as transfer function, have been used in SCI research. This approach does not account for inherent nonlinearity and nonstationarity components of cerebrovascular regulation, often depends on perturbations of BP to increase the statistical power, and does not account for the influence of arterial CO2 tension. Here, we used a nonlinear and nonstationary analysis approach termed wavelet decomposition analysis (WDA), which recently identified novel sympathetic influences on cerebrovascular buffering of BP occurring in the ultra-low-frequency range (ULF; 0.02-0.03Hz). WDA does not require BP perturbations and can account for influences of CO2 tension. Supine resting beat-by-beat BP (Finometer), middle cerebral artery blood velocity (transcranial Doppler), and end-tidal CO2 tension were recorded in cervical SCI ( n = 14) and uninjured ( n = 16) individuals. WDA revealed that cerebral blood flow more closely follows changes in BP in the ULF range ( P = 0.0021, Cohen's d = 0.89), which may be interpreted as an impairment in cerebrovascular buffering of BP. This persisted after accounting for CO2. Transfer function metrics were not different in the ULF range, but phase was reduced at 0.07-0.2 Hz ( P = 0.03, Cohen's d = 0.31). Sympathetically mediated cerebrovascular buffering of BP is impaired after SCI, and WDA is a powerful strategy for evaluating cerebrovascular buffering in clinical populations.


Subject(s)
Arterial Pressure , Brachial Artery/physiopathology , Cerebrovascular Circulation , Middle Cerebral Artery/physiopathology , Models, Cardiovascular , Spinal Cord Injuries/physiopathology , Ultrasonography, Doppler, Transcranial/methods , Wavelet Analysis , Adaptation, Physiological , Adult , Blood Flow Velocity , Female , Homeostasis , Humans , Male , Middle Aged , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/innervation , Predictive Value of Tests , Spinal Cord Injuries/diagnosis , Sympathetic Nervous System/physiopathology
15.
Sci Rep ; 7(1): 16929, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29209035

ABSTRACT

The aims of this study were: (1) to test whether oscillatory shear stress further exacerbates endothelial dysfunction in patients with moderate-severe COPD, and (2) to test whether low flow oxygen administration improves endothelial function and is protective against oscillatory shear stress-induced endothelial dysfunction in patients with moderate-severe COPD. In 17 patients and 10 age-matched non-smoking control subjects we examined brachial artery flow-mediated dilation (FMD) and circulating microparticles before and after 20 minutes of experimentally-induced oscillatory shear stress. COPD patients performed this intervention a second time following a 20-minute wash in period of low flow supplemental oxygen to normalize arterial oxygen saturation. COPD patients had ~six-fold greater baseline retrograde shear rate (P < 0.05) and lower FMD (P < 0.05). The oscillatory shear stress intervention induced significant decreases in brachial artery FMD of all groups (P < 0.05). Oscillatory shear stress elevated circulating markers of endothelial cell apoptosis (CD31+/CD41b- microparticles) in COPD patients, but not age-matched controls. Supplemental oxygen administration abrogated the oscillatory shear stress-induced increase in CD31+/CD41b- microparticles, and improved FMD after accounting for the shear stress stimulus. We have demonstrated that acutely disturbed blood flow with increased retrograde shear stress further deteriorates the already impaired endothelial function with attendant endothelial apoptosis in patients with moderate-severe COPD.


Subject(s)
Endothelium, Vascular/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Regional Blood Flow/physiology , Aged , Brachial Artery , Case-Control Studies , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Dilatation , Female , Humans , Male , Middle Aged , Oxygen/administration & dosage , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/drug therapy , Stress, Mechanical , Vasodilation
16.
J Neurophysiol ; 118(5): 2914-2924, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28835525

ABSTRACT

This study investigated the influence of ventilation on sympathetic action potential (AP) discharge patterns during varying levels of high chemoreflex stress. In seven trained breath-hold divers (age 33 ± 12 yr), we measured muscle sympathetic nerve activity (MSNA) at baseline, during preparatory rebreathing (RBR), and during 1) functional residual capacity apnea (FRCApnea) and 2) continued RBR. Data from RBR were analyzed at matched (i.e., to FRCApnea) hemoglobin saturation (HbSat) levels (RBRMatched) or more severe levels (RBREnd). A third protocol compared alternating periods (30 s) of FRC and RBR (FRC-RBRALT). Subjects continued each protocol until 85% volitional tolerance. AP patterns in MSNA (i.e., providing the true neural content of each sympathetic burst) were studied using wavelet-based methodology. First, for similar levels of chemoreflex stress (both HbSat: 71 ± 6%; P = NS), RBRMatched was associated with reduced AP frequency and APs per burst compared with FRCApnea (both P < 0.001). When APs were binned according to peak-to-peak amplitude (i.e., into clusters), total AP clusters increased during FRCApnea (+10 ± 2; P < 0.001) but not during RBRMatched (+1 ± 2; P = NS). Second, despite more severe chemoreflex stress during RBREnd (HbSat: 56 ± 13 vs. 71 ± 6%; P < 0.001), RBREnd was associated with a restrained increase in the APs per burst (FRCApnea: +18 ± 7; RBREnd: +11 ± 5) and total AP clusters (FRCApnea: +10 ± 2; RBREnd: +6 ± 4) (both P < 0.01). During FRC-RBRALT, all periods of FRC elicited sympathetic AP recruitment (all P < 0.001), whereas all periods of RBR were associated with complete withdrawal of AP recruitment (all P = NS). Presently, we demonstrate that ventilation per se restrains and/or inhibits sympathetic axonal recruitment during high, and even extreme, chemoreflex stress.NEW & NOTEWORTHY The current study demonstrates that the sympathetic neural recruitment patterns observed during chemoreflex activation induced by rebreathing or apnea are restrained and/or inhibited by the act of ventilation per se, despite similar, or even greater, levels of severe chemoreflex stress. Therefore, ventilation modulates not only the timing of sympathetic bursts but also the within-burst axonal recruitment normally observed during progressive chemoreflex stress.


Subject(s)
Action Potentials , Apnea/physiopathology , Pulmonary Ventilation , Recruitment, Neurophysiological , Reflex , Stress, Physiological , Sympathetic Nervous System/physiology , Adult , Female , Hemoglobins/metabolism , Humans , Male , Middle Aged
17.
Respir Physiol Neurobiol ; 243: 92-96, 2017 09.
Article in English | MEDLINE | ID: mdl-28583413

ABSTRACT

Pulmonary hyperinflation attained by glossopharyngeal insufflation (GPI) challenges the circulation by compressing the heart and pulmonary vasculature. Our aim was to determine the amount of blood translocated from the central blood volume during GPI. Cardiac output and cardiac chamber volumes were assessed by magnetic resonance imaging in twelve breath-hold divers at rest and during apnea with GPI. Pulmonary blood volume was determined from pulmonary blood flow and transit times for gadolinium during first-pass perfusion after intravenous injection. During GPI, the lung volume increased by 0.8±0.6L (11±7%) above the total lung capacity. All cardiac chambers decreased in volume and despite a heart rate increase of 24±29 bpm (39±50%), pulmonary blood flow decreased by 2783±1820mL (43±20%). The pulmonary transit time remained unchanged at 7.5±2.2s and pulmonary blood volume decreased by 354±176mL (47±15%). In total, central blood volume decreased by 532±248mL (46±14%). Voluntary pulmonary hyperinflation leads to ∼50% decrease in pulmonary and central blood volume.


Subject(s)
Breath Holding , Lung/diagnostic imaging , Magnetic Resonance Imaging , Pulmonary Circulation/physiology , Adult , Analysis of Variance , Cardiac Output/physiology , Female , Heart Rate/physiology , Hemodynamics , Humans , Image Processing, Computer-Assisted , Insufflation , Lung/physiology , Male , Regional Blood Flow , Statistics as Topic , Young Adult
18.
Respir Physiol Neurobiol ; 242: 8-11, 2017 08.
Article in English | MEDLINE | ID: mdl-28288844

ABSTRACT

The determining mechanisms of a maximal hyperoxic apnea duration in elite apneists have remained unexplored. We tested the hypothesis that maximal hyperoxic apnea duration in elite apneists is related to forced vital capacity (FVC) but not the central chemoreflex (for CO2). Eleven elite apneists performed a maximal dry static-apnea with prior hyperoxic (100% oxygen) pre-breathing, and a central chemoreflex test via a hyperoxic re-breathing technique (hyperoxic-hypercapnic ventilatory response: HCVR); expressed as the increase in ventilation (pneumotachometry) per increase in arterial CO2 tension (PaCO2; radial artery). FVC was assessed using standard spirometry. Maximal apnea duration ranged from 807 to 1262s (mean=1034s). Average HCVR was 2.0±1.2Lmin-1mmHg-1 PaCO2. The hyperoxic apnea duration was related to the FVC (r2=0.45, p<0.05), but not the HCVR (r2<0.01, p>0.05). These findings were interpreted to suggest that during a hyperoxic apnea, a larger initial lung volume prolongs the time before reaching intolerable discomfort associated with pending lung squeeze, while CO2 sensitivity has little impact.


Subject(s)
Breath Holding , Hyperoxia , Reflex , Vital Capacity , Adult , Apnea/physiopathology , Humans , Hyperoxia/physiopathology , Reflex/physiology , Spirometry , Time Factors , Vital Capacity/physiology
19.
Eur J Appl Physiol ; 117(4): 641-649, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28243777

ABSTRACT

PURPOSE: Trained breath-hold divers hyperinflate their lungs by glossopharyngeal insufflation (GPI) to prolong submersion time and withstand lung collapse at depths. Pulmonary hyperinflation leads to profound hemodynamic changes. METHODS: Thirteen divers performed preparatory breath-holds followed by apnea with GPI. Filling of extrathoracic veins was determined by ultrasound and magnetic resonance imaging and peripheral extravasation of fluid was assessed by electrical impedance. Femoral vein diameter was measured by ultrasound throughout the easy-going and struggle phase of apnea with GPI in eight divers in a sub-study. RESULTS: After GPI, pulmonary volume increased by 0.8 ± 0.6 L above total lung capacity. The diameter of the superior caval (by 36 ± 17%) and intrathoracic part of the inferior caval vein decreased (by 21 ± 16%), while the diameters of the internal jugular (by 53 ± 34%), hepatic (by 28 ± 40%), abdominal part of the inferior caval (by 28 ± 28%), and femoral veins (by 65 ± 50%) all increased (P < 0.05). Blood volume of the internal jugular, the hepatic, the abdominal part of the inferior caval vein, and the combined common iliac and femoral veins increased by 145 ± 115, 80 ± 88, 61 ± 60, and 183 ± 197%, respectively. In the sub-study, femoral vein diameter increased by 44 ± 33% in the easy-going phase of apnea with GPI, subsequently decreasing by 20 ± 16% during the struggle phase. Electrical impedance remained unchanged over the thigh and forearm, thus excluding peripheral fluid extravasation. CONCLUSIONS: GPI leads to heart and pulmonary vessel compression, resulting in redistribution of blood to extrathoracic capacitance veins proximal to venous valves. This is partially reversed by the onset of involuntary breathing movements.


Subject(s)
Breath Holding , Hemodynamics , Lung/physiology , Adult , Diving/physiology , Female , Femoral Vein/diagnostic imaging , Femoral Vein/physiology , Humans , Lung/blood supply , Lung/diagnostic imaging , Lung Volume Measurements , Male , Random Allocation , Venae Cavae/diagnostic imaging , Venae Cavae/physiology
20.
J Cereb Blood Flow Metab ; 37(9): 3231-3242, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28071964

ABSTRACT

The cerebral metabolic rate of oxygen (CMRO2) is reduced during apnea that yields profound hypoxia and hypercapnia. In this study, to dissociate the impact of hypoxia and hypercapnia on the reduction in CMRO2, 11 breath-hold competitors completed three apneas under: (a) normal conditions (NM), yielding severe hypercapnia and hypoxemia, (b) with prior hyperventilation (HV), yielding severe hypoxemia only, and (c) with prior 100% oxygen breathing (HX), yielding the greatest level of hypercapnia, but in the absence of hypoxemia. The CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-jugular venous oxygen content difference (cannulation). Secondary measures included net-cerebral glucose/lactate exchange and nonoxidative metabolism. Reductions in CMRO2 were largest in the HX condition (-44 ± 15%, p < 0.05), with the most severe hypercapnia (PaCO2 = 58 ± 5 mmHg) but maintained oxygen saturation. The CMRO2 was reduced by 24 ± 27% in NM ( p = 0.05), but unchanged in the HV apnea where hypercapnia was absent. A net-cerebral lactate release was observed at the end of apnea in the HV and NM condition, but not in the HX apnea (main effect p < 0.05). These novel data support hypercapnia/pH as a key mechanism mediating reductions in CMRO2 during apnea, and show that severe hypoxemia stimulates lactate release from the brain.


Subject(s)
Apnea/metabolism , Cerebral Cortex/metabolism , Hypercapnia/metabolism , Oxidative Stress , Adult , Apnea/physiopathology , Blood Flow Velocity/physiology , Breath Holding , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Female , Humans , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Jugular Veins , Lactic Acid/metabolism , Male , Oxygen/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...