Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 12(12): 1155-1160, 2017 12.
Article in English | MEDLINE | ID: mdl-28920964

ABSTRACT

Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

2.
J Phys Chem A ; 121(29): 5442-5449, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28650633

ABSTRACT

With the goal of elucidating electronic and conformational effects on structure-spectroscopic property relationships in platinum acetylides, we synthesized a series of nominally centrosymmetric chromophores trans-Pt(PBu3)2(C≡C-Phenyl-X)2, where X = diphenylamino (DPA), NH2, OCH3, t-Bu, CH3, H, F, benzothiazole (BTH), CF3, CN, and NO2. We collected one- and two-photon absorption spectra and also performed density functional theory (DFT) and time-dependent (TD) DFT calculations on the ground- and excited-state properties of these compounds. The DFT calculations revealed facile rotation between the two ligands, suggesting that the compounds exhibit nonplanar ground-state conformations in solution. TDDFT calculation of the S1 state energy and transition dipole moment for a nonplanar conformation gave good agreement with experiment. Two-photon absorption spectra obtained from these compounds allowed estimation of the change of permanent electric dipole moment upon vertical excitation from ground state to S1 state. The values are small Δµ < 1.0 D for neutral substituents such as CH3, H, and F but increase sharply to Δµ ≈ 11 D for electron-accepting NO2. When in a nonplanar conformation, the corresponding calculated Δµ values showed good agreement with the experimental data indicating that the two-photon spectra result from nonplanar ground-state conformations. Previously studied related chromophores having extended conjugation ( Rebane, A.; Drobizhev, M.; Makarov, N. S.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Haley, J. E.; Krein, D. M.; Fore, J. L.; Burke, A. R.; Slagle, J. E.; McLean, D. G.; Cooper, T. M. J. Phys. Chem. A 2014 , 118 , 3749 - 3759 ) show similar dependence of Δµ on the substituents, which allows us to conclude that the excited-state properties of these floppy chromophores are a function of the electronic properties of the substituents, ligand size, and nonplanar molecular conformation.

3.
PLoS One ; 11(10): e0163676, 2016.
Article in English | MEDLINE | ID: mdl-27732668

ABSTRACT

Although sheep (Ovis aries) have been one of the most exploited domestic animals in Estonia since the Late Bronze Age, relatively little is known about their genetic history. Here, we explore temporal changes in Estonian sheep populations and their mitochondrial genetic diversity over the last 3000 years. We target a 558 base pair fragment of the mitochondrial hypervariable region in 115 ancient sheep from 71 sites in Estonia (c. 1200 BC-AD 1900s), 19 ancient samples from Latvia, Russia, Poland and Greece (6800 BC-AD 1700), as well as 44 samples of modern Kihnu native sheep breed. Our analyses revealed: (1) 49 mitochondrial haplotypes, associated with sheep haplogroups A and B; (2) high haplotype diversity in Estonian ancient sheep; (3) continuity in mtDNA haplotypes through time; (4) possible population expansion during the first centuries of the Middle Ages (associated with the establishment of the new power regime related to 13th century crusades); (5) significant difference in genetic diversity between ancient populations and modern native sheep, in agreement with the beginning of large-scale breeding in the 19th century and population decline in local sheep. Overall, our results suggest that in spite of the observed fluctuations in ancient sheep populations, and changes in the natural and historical conditions, the utilisation of local sheep has been constant in the territory of Estonia, displaying matrilineal continuity from the Middle Bronze Age through the Modern Period, and into modern native sheep.


Subject(s)
Genetic Variation , Sheep, Domestic/genetics , Animals , Archaeology , Breeding/history , DNA, Mitochondrial/isolation & purification , DNA, Mitochondrial/metabolism , Estonia , Fossils , Haplotypes , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, Ancient , History, Medieval , Mitochondria/genetics , Sequence Analysis, DNA , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...