Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phytotaxa ; 532(3): 192-208, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35330967

ABSTRACT

Timaviella Sciuto & Moro is a recently established cryptic genus of cyanobacteria separated from the morphologically close Leptolyngbya due to clear differences in the 16S rRNA gene sequence and the 16S-23S ITS region secondary structure. Conducting research on biological soil crusts in coastal ecotopes of Ukraine and Germany, we repeatedly observed thin filamentous cyanobacteria morphologically corresponding to the common terrestrial species Leptolyngbya edaphica (Elenkin) Anagnostidis & Komárek. Molecular data based on 16S rRNA gene sequence comparison of the original strains of the morphospecies indicated unambiguous assignment to the genus Timaviella. Based on this finding, we proposed the new nomenclatural combination Timaviella edaphica (Elenkin) O.M. Vynogr. & Mikhailyuk in our previous publication. Deeper molecular study of the four original strains which were morphologically identified as T. edaphica based on the 16S rRNA gene concatenated with the 16S-23S ITS region and 16S-23S ITS secondary structure analysis showed that they are not identical. Three of them (isolated from biocrusts of Black Sea coast and forest path near Kyiv, Ukraine) had high similarity both in 16S rRNA (99.7-100%) and 16S-23S ITS (99.8-100%) hence actually representing T. edaphica. The strain Us-6-3 isolated from biocrusts on sand dunes of Usedom Island in the Baltic Sea, Germany, differs both from original strains of T. edaphica and all published Timaviella species in 16S rRNA gene sequence identity, as well as in sequence and structure of the 16S-23S ITS region. Here we describe Timaviella dunensis sp. nov. and give an expanded description of T. edaphica based on morphological and molecular features. A tabular review of Timaviella species with data on their phenotypic and genotypic features, ecology and distribution is included.

2.
Biology (Basel) ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36671750

ABSTRACT

(1) Biological soil crusts (biocrusts) are microecosystems consisting of prokaryotic and eukaryotic microorganisms growing on the topsoil. This study aims to characterize changes in the community structure of biocrust phototrophic organisms along a dune chronosequence in the Baltic Sea compared to an inland dune in northern Germany. (2) A vegetation survey followed by species determination and sediment analyses were conducted. (3) The results highlight a varying phototrophic community composition within the biocrusts regarding the different successional stages of the dunes. At both study sites, a shift from algae-dominated to lichen- and moss-dominated biocrusts in later successional dune types was observed. The algae community of both study sites shared 50% of the identified species while the moss and lichen community shared less than 15%. This indicates a more generalized occurrence of the algal taxa along both chronosequences. The mosses and lichens showed a habitat-specific species community. Moreover, an increase in the organic matter and moisture content with advanced biocrust development was detected. The enrichment of carbon, nitrogen, and phosphorus in the different biocrust types showed a similar relationship. (4) This relation can be explained by biomass growth and potential nutrient mobilization by the microorganisms. Hence, the observed biocrust development potentially enhanced soil formation and contributed to nutrient accumulation.

3.
Front Microbiol ; 12: 671742, 2021.
Article in English | MEDLINE | ID: mdl-34305839

ABSTRACT

The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S-23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S-23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.

4.
Microorganisms ; 8(11)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121104

ABSTRACT

Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.

5.
Microorganisms ; 8(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674483

ABSTRACT

Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone with (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.

6.
J Phycol ; 56(5): 1216-1231, 2020 10.
Article in English | MEDLINE | ID: mdl-32422688

ABSTRACT

The polyphasic approach has been widely applied in cyanobacterial taxonomy, which frequently led to additions to the species inventory. Increasing our knowledge about species and the habitats they were isolated from enables new insights into the ecology of newly established genera and species allowing speculations about the ecological niche of taxa. Here, we are describing three new species belonging to three genera that broadens the ecological amplitude and the geographical range of each of the three genera. Cyanocohniella crotaloides sp. nov. is described from sandy beach mats of the temperate island Schiermonnikoog, Netherlands, Oculatella crustae-formantes sp. nov. was isolated from biological soil crusts of the Arctic Spitsbergen, Norway, and Aliterella chasmolithica originated from granitic stones of the arid Atacama Desert, Chile. All three species could be separated from related species using molecular sequencing of the 16S rRNA gene and 16S-23S ITS gene region, the resulting secondary structures as well as p-distance analyses of the 16S-23S ITS and various microscopic techniques. The novel taxa described in this study contribute to a better understanding of the diversity of the genera Cyanocohniella, Oculatella, and Aliterella in different habitats.


Subject(s)
DNA, Bacterial , RNA, Ribosomal, 16S , Arctic Regions , Chile , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Svalbard
7.
J Phycol ; 56(3): 671-686, 2020 06.
Article in English | MEDLINE | ID: mdl-31994728

ABSTRACT

Several strains of terrestrial algae isolated from biological soil crusts in Germany and Ukraine were identified by morphological methods as the widely distributed species Dictyosphaerium minutum (=Dictyosphaerium chlorelloides). Investigation of the phylogeny showed their position unexpectedly outside of Chlorellaceae (Trebouxiophyceae) and distantly from Chlorella chlorelloides, to which this taxon was attributed after revision of the genus Chlorella based on an integrative approach. SSU rRNA phylogeny determined the position of our strains inside a clade recently described as a new genus of the cryptic alga Xerochlorella olmiae isolated from desert biological soil crusts in the United States. Investigation of the morphology of the authentic strain of X. olmiae showed Dictyosphaerium-like morphology, as well as some other characters, common for our strains and morphospecies D. minutum. The latter alga was described as terrestrial and subsequently united with the earlier described aquatic representative D. chlorelloides because of their similar morphology. The revision of Chlorella mentioned above provided only one aquatic strain (D. chlorelloides), which determined its position in the genus. But terrestrial strains of the morphospecies were not investigated phylogenetically. Our study showed that the terrestrial D. minutum is not related to the morphologically similar D. chlorelloides (=Chlorella chlorelloides, Chlorellaceae), and instead represented a separate lineage in the Trebouxiophyceae, recently described as genus Xerochlorella. Therefore, revision of Xerochlorella is proposed, including nomenclatural combinations, epitypifications, and emendations of two species: X. minuta and X. dichotoma. New characters of the genus based on investigation of morphology and ultrastructure were determined.


Subject(s)
Chlorella , Germany , Phylogeny
8.
Phytotaxa ; 400(3): 165-179, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31501642

ABSTRACT

Representatives of the Gomontiellaceae (Oscillatoriales) are rare and hence unstudied cyanobacteria with unusual morphology, distributed in terrestrial and aquatic habitats all over the world. Investigation of the group based on an integrative approach is only beginning, and to understand the actual biodiversity and ecology, a greater number of cultivated strains is necessary. However, some ecological traits of these cyanobacteria (e.g. low population densities, the absence of conspicuous growth in nature) led to methodological difficulties during isolation in culture. One species in the family Gomontiellaceae, Crinalium magnum Fritsch et John, is characterized by prominent wide and flattened trichomes, and represented by the non-authentic strain SAG 34.87. Detailed previous investigation of this strain clearly showed its morphological discrepancy with the original description of C. magnum and the genus Crinalium in general. The new isolate from maritime sand dunes of the Baltic Sea coast (Germany), however, revealed morphological characters completely corresponding with the diagnosis of C. magnum. Phylogenetic analysis based on 16S rRNA sequences indicated a position of the new strain inside Gomontiellaceae. Both morphology and ultrastructure of the strain are congruous with characters of the family. Epitypification and emendation of C. magnum are proposed since the ecology and habitat of the original strain are congruent with the type locality of this rare species (sand, Irish Sea coast, North Wales, UK). We expanded the description of C. magnum by details of the filament development and specified dimensional ranges for trichomes and cells, as well as by new data about the transversely striated structure of mucilaginous sheath.

9.
Microb Ecol ; 77(2): 380-393, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29974184

ABSTRACT

Streptophyte algae are the ancestors of land plants, and several classes contain taxa that are adapted to an aero-terrestrial lifestyle. In this study, four basal terrestrial streptophytes from the class Klebsormidiophyceae, including Hormidiella parvula; two species of the newly described genus Streptosarcina (S. costaricana and S. arenaria); and the newly described Streptofilum capillatum were investigated for their responses to radiation, desiccation and temperature stress conditions. All the strains showed low-light adaptation (Ik < 70 µmol photons m-2 s-1) but differed in photoprotective capacities (such as non-photochemical quenching). Acclimation to enhanced photon fluence rates (160 µmol photons m-2 s-1) increased photosynthetic performance in H. parvula and S. costaricana but not in S. arenaria, showing that low-light adaptation is a constitutive trait for S. arenaria. This lower-light adaptation of S. arenaria was coupled with a higher desiccation tolerance, providing further evidence that dehydration is a selective force shaping species occurrence in low light. For protection against ultraviolet radiation, all species synthesised and accumulated different amounts of mycosporine-like amino acids (MAAs). Biochemically, MAAs synthesised by Hormidiella and Streptosarcina were similar to MAAs from closely related Klebsormidium spp. but differed in retention time and spectral characteristics in S. capillatum. Unlike the different radiation and dehydration tolerances, Hormidiella, Streptosarcina and Streptofilum displayed preferences for similar thermal conditions. These species showed a temperature dependence of photosynthesis similar to respiration, contrasting with Klebsormidium spp. and highlighting an interspecific diversity in thermal requirements, which could regulate species distributions under temperature changes.


Subject(s)
Photosynthesis , Streptophyta/physiology , Streptophyta/radiation effects , Water/metabolism , Adaptation, Physiological/radiation effects , Ecosystem , Temperature , Ultraviolet Rays
10.
Mol Phylogenet Evol ; 133: 236-255, 2019 04.
Article in English | MEDLINE | ID: mdl-30576758

ABSTRACT

Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.


Subject(s)
Biodiversity , Phylogeny , Soil , Streptophyta/classification , Chloroplasts , DNA, Intergenic/genetics , Forests , Geography , Nucleic Acid Conformation
11.
Protist ; 169(3): 406-431, 2018 07.
Article in English | MEDLINE | ID: mdl-29860113

ABSTRACT

Two new genera (Streptosarcina and Streptofilum) and three new species (Streptosarcina arenaria, S. costaricana and Streptofilum capillatum) of streptophyte algae were detected in cultures isolated from terrestrial habitats of Europe and Central America and described using an integrative approach. Additionally, a strain isolated from soil in North America was identified as Hormidiella parvula and proposed as an epitype of this species. The molecular phylogeny based on 18S rRNA and rbcL genes, secondary structure of ITS-2, as well as the morphology of vegetative and reproductive stages, cell ultrastructure, ecology and distribution of the investigated strains were assessed. The new genus Streptosarcina forms a sister lineage to the genus Hormidiella (Klebsormidiophyceae). Streptosarcina is characterized by packet-like (sarcinoid) and filamentous thalli with true branching and a cell organization typical for Klebsormidiophyceae. Streptofilum forms a separate lineage within Streptophyta. This genus represents an easily disintegrating filamentous alga which exhibits a cell coverage of unique structure: layers of submicroscopic scales of piliform shape covering the plasmalemma and exfoliate inside the mucilage envelope surrounding cells. The implications of the discovery of the new taxa for understanding evolutionary tendencies in the Streptophyta, a group of great evolutionary interest, are discussed.


Subject(s)
Ecosystem , Phylogeny , Streptophyta/classification , Streptophyta/genetics , Central America , Cluster Analysis , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Europe , Microscopy , Microscopy, Electron, Transmission , North America , Nucleic Acid Conformation , RNA, Ribosomal, 18S/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Analysis, DNA , Soil Microbiology , Streptophyta/ultrastructure
12.
Front Microbiol ; 8: 1485, 2017.
Article in English | MEDLINE | ID: mdl-28848507

ABSTRACT

In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

13.
Microb Ecol ; 71(1): 178-93, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26507846

ABSTRACT

Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.


Subject(s)
Biodiversity , Chlorophyta/classification , Cyanobacteria/isolation & purification , Soil Microbiology , Baltic States , Chlorophyta/genetics , Cyanobacteria/classification , Cyanobacteria/genetics , Diatoms/classification , Diatoms/genetics , Diatoms/isolation & purification , Soil/chemistry
14.
J Phycol ; 51(4): 750-67, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26504252

ABSTRACT

Forty Klebsormidium strains isolated from soil crusts of mountain regions (Alps, 600­3,000 m elevation) were analyzed. The molecular phylogeny (internal transcribed spacer rDNA sequences) showed that these strains belong to clades B/C, D, E, and F. Seven main (K. flaccidum, K. elegans, K. crenulatum, K. dissectum, K. nitens, K. subtile, and K. fluitans) and four transitional morphotypes (K. cf. flaccidum, K. cf. nitens, K. cf. subtile, and K. cf. fluitans) were identified. Most strains belong to clade E, which includes isolates that prefer humid conditions. One representative of the xerophytic lineage (clade F) as well as few isolates characteristic of temperate conditions (clades B/C, D) were found. Most strains of clade E were isolated from low/middle elevations (<1,800 m above sea level; a.s.l.) in the pine-forest zone. Strains of clades B/C, D, and F occurred sporadically at higher elevations (1,548­2,843 m a.s.l.), mostly under xerophytic conditions of alpine meadows. Comparison of the alpine Klebsormidium assemblage with data from other biogeographic regions indicated similarity with soil crusts/biofilms from terrestrial habitats in mixed forest in Western Europe, North America, and Asia, as well as walls of buildings in Western European cities. The alpine assemblage differed substantially from crusts from granite outcrops and sand dunes in Eastern Europe (Ukraine), and fundamentally from soil crusts in South African drylands. Epitypification of the known species K. flaccidum, K. crenulatum, K. subtile, K. nitens, K. dissectum, K. fluitans, K. mucosum, and K. elegans is proposed to establish taxonomic names and type material as an aid for practical studies on these algae, as well as for unambiguous identification of alpine strains. New combination Klebsormidium subtile (Kützing) Mikhailyuk, Glaser, Holzinger et Karsten comb. nov. is made.

15.
Eur J Phycol ; 49(4): 395-412, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-26504365

ABSTRACT

Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions.

16.
Mol Phylogenet Evol ; 58(2): 218-31, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21145975

ABSTRACT

Members of the genus Klebsormidium have cosmopolitan distribution and occur in a very wide range of freshwater and terrestrial habitats. Due to its simple filamentous morphology, this genus represents a taxonomically and systematically complex taxon in which phylogenetic relationships are still poorly understood. The phylogeny of Klebsormidium and closely related taxa was investigated using new ITS rRNA and rbcL sequences generated from 75 strains (isolated from field samples or obtained from culture collections). These sequences were analyzed both as single-marker datasets and in a concatenated dataset. Seven main superclades were observed in the analyses, which included sixteen well-supported clades. Some species of Klebsormidium, including the type species Klebsormidium flaccidum, were polyphyletic. Interfilum was recovered with high statistical support as sister taxon to a clade of Klebsormidium formed mainly by strains identified as K. flaccidum. Whereas some clades could be easily associated with described species, this was not possible for other clades. A new lineage of Klebsormidium, isolated from arid soils in southern Africa and comprising undescribed species, was discovered. Several morphological characters traditionally used for taxonomic purposes were found to have no phylogenetic significance and in some cases showed intra-clade variation. The capacity to form packet-like aggregates (typical of Interfilum), features of the morphology of the chloroplast and the type of habitat were the main phylogenetically relevant characters. Overall, Klebsormidium and Interfilum formed a more diverse algal group than was previously appreciated, with some lineages apparently undergoing active evolutionary radiation; in these lineages the genetic variation observed did not match the morphological and ecological diversity.


Subject(s)
Biological Evolution , Phylogeny , Streptophyta/classification , Bayes Theorem , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Likelihood Functions , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Alignment , Sequence Analysis, DNA , Streptophyta/genetics
17.
J Phycol ; 44(6): 1586-603, 2008 Dec.
Article in English | MEDLINE | ID: mdl-27039871

ABSTRACT

Sarcinoid aeroterrestrial green algae were isolated from three arid locations in Ukraine and the Czech Republic. Although gross morphology suggested an affinity with Desmococcus (for taxonomic authorities, see Table S1 in the supplementary material), the cellular morphological characteristics were reminiscent of those of Geminella terricola. However, the presence of a complex of ultrastructural features indicated that these isolates were members of the streptophyte lineage in the green plants. 18S rDNA sequence phylogenies provided evidence of a close relationship with Klebsormidium in the Streptophyta, while the position of Desmococcus was within the Trebouxiophyceae. In the internal transcribed spacer (ITS) rDNA phylogeny, the sarcinoid isolates were closely related with strains of G. terricola and Interfilum paradoxum. Strains of that clade were morphologically united by a specific type of cell division that involves the association of persistent, cap-shaped remains of the mother cell wall with daughter cells. Consequently, these strains were assigned to a redefined genus Interfilum, and a new species, I. massjukiae, was described to accommodate one of the sarcinoid isolates. As the position of the genus Geminella was in the Trebouxiophyceae, the streptophyte G. terricola was transferred to Interfilum, as I. terricola comb. nov., but the ITS rDNA analyses proved inconclusive to resolve its affinities with other species of Interfilum due to intragenomic polymorphisms. The species of Interfilum had a closer relationship with K. flaccidum than with other species of Klebsormidium. The latter genus may not be monophyletic in its present circumscription.

SELECTION OF CITATIONS
SEARCH DETAIL
...