Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475565

ABSTRACT

Phenological gaps exert a significant influence on the growth of dwarf bamboos. However, how dwarf bamboos respond to and exploit these phenological gaps remain enigmatic. The light environment, soil nutrients, leaf morphology, maximum photosynthetic rate, foliage dynamics, and branching characteristics of Sasa kurilensis were examined under the canopies of Fagus crenata and Magnolia obovata. The goal was to elucidate the adaptive responses of S. kurilensis to phenological gaps in the forest understory. The findings suggest that phenological gaps under an M. obovata canopy augment the available biomass of S. kurilensis, enhancing leaf area, leaf thickness, and carbon content per unit area. However, these gaps do not appreciably influence the maximum photosynthetic rate, total leaf number, leaf lifespan, branch number, and average branch length. These findings underscore the significant impact of annually recurring phenological gaps on various aspects of S. kurilensis growth, such as its aboveground biomass, leaf morphology, and leaf biochemical characteristics. It appears that leaf morphology is a pivotal trait in the response of S. kurilensis to phenological gaps. Given the potential ubiquity of the influence of phenological gaps on dwarf bamboos across most deciduous broadleaf forests, this canopy phenomenon should not be overlooked.

2.
Materials (Basel) ; 16(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37512204

ABSTRACT

This study aimed to develop an automated pH-cycling system using inexpensive commercial components that can replicate pH fluctuations in the oral cavity and salivary clearance to compare demineralization characteristics with the conventional method. The study found that the newly developed cycle-1 group showed improved demineralization properties, including apparent lesion depth, surface roughness, Vickers hardness, mineral loss, and depth of demineralization, compared to the control group. Additionally, the cycle-2 group, which had a longer cycle interval, showed further improvements in the demineralization properties. This system can replicate the differences in dental damage caused by differences in meals, snacking frequencies, and lifestyle rhythms, making it useful in cariology, preventive dentistry research, and oral care product development. It can be constructed using inexpensive commercial products, significantly reducing research costs and improving reproducibility and fairness between different experimental facilities. The system can replicate lifestyle rhythms, such as meals, sleep, and oral clearance by saliva, making it an in vitro pseudo-oral cavity.

3.
Dent J (Basel) ; 10(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36135156

ABSTRACT

This study aimed to compare the effectiveness of a novel professional tooth-strengthening system and a conventional caries-prevention method that involved the use of high fluoride concentrations, to determine whether the system has a whitening effect. Bovine tooth-enamel samples were treated with fluoride gel (conventional APF method) or a mixture of citric acid gel, calcium phosphate (α-TCP), and fluoride gel, referred to as the CAP system; these treatments were performed to generate an acid-resistant layer on the enamel surface. For the evaluation of the acid resistance, a cyclic experiment, involving a 1-h remineralization and a 24-h acid treatment, was conducted thrice after the treatments. The height profiles were observed using a 3D-measuring laser microscope and the hardness was evaluated by Vickers hardness test. The morphological changes in the surface and cross-section of the enamel were observed by scanning electron microscopy. To evaluate the whitening effect, the enamel was ground until the color of the underlying dentin was recognizable; the CAP system was applied once, and the color change was measured using a color difference meter. As a result, it was confirmed that an acid-resistant layer was formed on the tooth surfaces treated with the CAP system, and a whitening effect was obtained.

4.
New Phytol ; 229(6): 3549-3557, 2021 03.
Article in English | MEDLINE | ID: mdl-33220077

ABSTRACT

Hydrangea sepals exhibit a wide range of colors, from red, through purple, to blue; the purple color is a color mosaic. However, all of these colors are derived from the same components: simple anthocyanins, 3-O-glycosyldelphinidins, three co-pigment components, acylquinic acids and aluminum ions (Al3+ ). We show the color mosaic is a result of graded differences in intravacuolar factors. In order to clarify the mechanisms of mosaic color, we performed single-cell analyses of vacuolar pH, and anthocyanin, co-pigment and Al3+ content. From the sepals, a protoplast mixture of various colors was obtained. The cell color was evaluated by microspectrophotometry and vacuolar pH then was recorded by using a pH microelectrode. The organic and Al3+ contents were quantified by micro-HPLC. We found that the bluer the cell, the greater the ratio of 5-O-acylquinic acids and Al3+ to anthocyanins. Furthermore, reproducing experiments were conducted by mixing the components under various pH condition; all the colors could be reproduced in the various mixing conditions. Based on the above, we provide experimental evidence for cell color variation in hydrangea. Our study demonstrates the expression of phenotypic differences without any direct genomic control.


Subject(s)
Hydrangea , Aluminum , Anthocyanins , Color , Flowers , Single-Cell Analysis
5.
Am J Bot ; 107(8): 1122-1135, 2020 08.
Article in English | MEDLINE | ID: mdl-32779767

ABSTRACT

PREMISE: Water stored in the xylem of woody plants is important for supporting the transpiration stream under prolonged drought, yet the source of stored water within the xylem during drought remains unclear. Insights into xylem water utilization during drought will uncover the adaptation strategies of the test species to stress. METHODS: To fill the existing knowledge gap, we excised twigs of Abies firma (Japanese fir, conifer), Cercidiphyllum japonicum (katsura tree, diffuse-porous) and Quercus serrata (konara oak, ring-porous) to quantify interspecific variation of water transfer in xylem corresponding with increasing cumulative water release (CWR) using micro x-ray computed tomography and cryo-SEM. RESULTS: For all species studied, the main components of water storage within the operating range of water potential were not living cells but cavitation release and capillaries. Abies firma maintained water in the earlywood-like cells, for possible maintenance of the transpiration stream. Cercidiphyllum japonicum maintained water in its vessels over 200 kg m-3 of CWR, while Q. serrata lost most of its water in vessels with increasing CWR up to 100 kg m-3 . Cercidiphyllum japonicum exhibited a higher water storage capacity than Q. serrata. Under high CWR, narrow conduits stored xylem water in C. japonicum and imperforate tracheary elements in Q. serrata. CONCLUSIONS: Among the species examined, increasing CWR appears to indicate differential utilization of stored water in relation to variation of xylem structure, thereby providing insight into the interspecific responses of tree species to drought.


Subject(s)
Trees , Water , Dehydration , Droughts , Humans , Xylem
6.
Tree Physiol ; 39(10): 1685-1695, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31222295

ABSTRACT

Xylem tension relaxation is an important procedure that closely resembles the in vivo xylem water distribution when measuring conductivity or observing water distribution of plant tissue samples by cryo-scanning electron microscopy (cryo-SEM). Recent studies have shown that partial xylem embolism occurs when samples under tension are cut under water and that gas-filled vessels are refilled during tension relaxation. Furthermore, the frequency of gas-filled vessels has been reported to increase in samples without tension relaxation before cryo-fixation by liquid nitrogen, particularly in samples with significant tension. Here, we examined the effect of tension relaxation on these artifacts in Carpinus tschonoskii and Cercidiphyllum japonicum using magnetic resonance imaging. We observed that xylem embolism rarely occurs in bench-dried samples cut under water. In both species, a small portion of the xylem was refilled within ~1 h after tension relaxation. Cryo-SEM observations revealed that short-time (<1 h) xylem tension relaxation decreases the frequency of gas-filled vessels in samples frozen after xylem tension relaxation regardless of the water potential compared with that in samples frozen without rehydration in both species. Therefore, short-time tension relaxation is necessary to retain xylem water distribution during sample preparation against artifacts.


Subject(s)
Artifacts , Xylem , Betulaceae , Porosity , Water
7.
Plant Cell Environ ; 39(2): 329-37, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26234764

ABSTRACT

It was recently reported that cutting artefacts occur in some species when branches under tension are cut, even under water. We used non-destructive magnetic resonance imaging (MRI) to investigate the change in xylem water distribution at the cellular level in Vitis coignetiae standing stems before and after relaxing tension. Less than 3% of vessels were cavitated when stems under tension were cut under water at a position shorter than the maximum vessel length (MVL) from the MRI point, in three of four plants. The vessel contents remained at their original status, and cutting artefact vessel cavitation declined to <1% when stems were cut at a position farther than the MVL from the MRI point. Water infiltration into the originally cavitated vessels after cutting the stem, i.e. vessel refilling, was found in <1% of vessels independent of cutting position on three of nine plants. The results indicate that both vessel cavitation and refilling occur in xylem tissue under tension following stem cutting, but its frequency is quite small, and artefacts can be minimized altogether if the distance between the monitoring position and the cutting point is longer than the MVL.


Subject(s)
Magnetic Resonance Spectroscopy , Plant Stems/physiology , Vitis/physiology , Xylem/physiology , Artifacts , Plant Stems/ultrastructure , Water , Xylem/anatomy & histology , Xylem/ultrastructure
8.
Plant Cell Environ ; 38(12): 2508-18, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25630712

ABSTRACT

Development of xylem embolism during water stress in two diffuse-porous hardwoods, Katsura (Cercidiphyllum japonicum) and Japanese white birch (Betula platyphylla var. japonica), was observed non-destructively under a compact magnetic resonance imaging (MRI) system in addition to conventional quantitation of hydraulic vulnerability to cavitation from excised stem segments. Distribution of white and dark areas in MR images corresponded well to the distribution of water-filled/embolized vessels observed by cryo-scanning electron microscopy in both species. Water-filled vessels were observed in MR images as white areas in Katsura and as white dots in Japanese white birch, respectively, and embolisms could be detected as a change to dark areas. The increase in the relative embolized area (REA: %) in the cross-sectional area of total xylem during water stress, which was estimated from the binarized MR images, was consistent with the hydraulic vulnerability curves of these species. From the non-destructive MRI observations, cavitation induced by water stress was shown to develop earlier in 1- or 2-year-old xylem than in the current-year xylem in both species; that is, the vulnerability to cavitation differs between vessels in the current-year xylem and those in older annual rings.


Subject(s)
Betula/physiology , Magnetic Resonance Imaging/methods , Magnoliopsida/physiology , Xylem/physiology , Betula/ultrastructure , Dehydration , Magnoliopsida/ultrastructure , Plant Stems/physiology , Plant Stems/ultrastructure , Porosity , Water/physiology , Xylem/ultrastructure
9.
Tree Physiol ; 33(4): 335-44, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23492871

ABSTRACT

Woody species hydraulically vulnerable to xylem cavitation may experience daily xylem embolism. How such species cope with the possibility of accumulated embolism is unclear. In this study, we examined seven temperate woody species to assess the hypothesis that low cavitation resistance (high vulnerability to cavitation) is compensated by high recovery performance via vessel refilling. We also evaluated leaf functional and xylem structural traits. The xylem recovery index (XRI), defined as the ratio of xylem hydraulic conductivity in plants rewatered after soil drought to that in plants under moist conditions, varied among species. The xylem water potential causing 50% loss of hydraulic conductivity (Ψ50) varied among the species studied, whereas only a slight difference was detected with respect to midday xylem water potential (Ψmin), indicating smaller hydraulic safety margins (Ψmin - Ψ50) for species more vulnerable to cavitation. Cavitation resistance (|Ψ50|) was negatively correlated with XRI across species, with cavitation-vulnerable species showing a higher performance in xylem recovery. Wood density was positively correlated with cavitation resistance and was negatively correlated with XRI. These novel results reveal that coordination exists between cavitation resistance and xylem recovery performance, in association with wood functional traits such as denser wood for cavitation-resistant xylem and less-dense but water-storable wood for refillable xylem. These findings provide insights into long-term maintenance of water transport in tree species growing under variable environmental conditions.


Subject(s)
Betulaceae/physiology , Prunus/physiology , Salix/physiology , Xylem/metabolism , Betulaceae/anatomy & histology , Biological Transport , Desiccation , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Prunus/anatomy & histology , Salix/anatomy & histology , Species Specificity , Trees/anatomy & histology , Trees/physiology , Xylem/anatomy & histology
10.
Mycorrhiza ; 22(6): 419-28, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22041997

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.


Subject(s)
Glomeromycota/physiology , Juniperus/microbiology , Mycorrhizae/physiology , Soil Microbiology , Bacteria/genetics , Desert Climate , Ecosystem , Endophytes/genetics , Endophytes/physiology , Fungi/genetics , Fungi/physiology , Glomeromycota/genetics , Groundwater , Mycorrhizae/genetics , Phylogeny , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Soil/chemistry
11.
Tree Physiol ; 30(5): 608-17, 2010 May.
Article in English | MEDLINE | ID: mdl-20368339

ABSTRACT

Xylem cavitation and its recovery were studied in 1-year-old stems of ring-porous Quercus serrata Thunb. and diffuse-porous Betula platyphylla var. japonica Hara. The Q. serrata had 5-100 microm vessel diameter in the functional current xylem and 5-75 microm in nonconducting 1-year-old xylem; B. platyphylla had a narrower range of vessel diameters of 5-55 microm and more than double the number of vessels in both functional growth rings. Although hydraulic conductivity of Q. serrata appeared to decrease after release of moderate water stress of a half loss of native hydraulic conductivity--about -2 MPa in xylem water potential--no significant recovery of hydraulic conductivity was observed, probably because of intraspecific variation in vessel diameter distribution, which induced variable vulnerability to cavitation. Furthermore, in terms of xylem anatomy, larger and more efficient vessels of the current xylem did not show obvious refilling. In B. platyphylla, after release of water stress, rapid (1 h) recoveries of both hydraulic conductivity and water potential were apparent after rewatering: so-called 'novel refilling'. During that time, a high degree of vessel refilling was observed in both xylems. At 12 h after rewatering, embolized vessels of the current xylem had refilled completely, although about 20% of vessels were still embolized in 1-year-old xylem. This different pattern of vessel refilling in relation to xylem age for B. platyphylla might be attributable to structural faults in the 1-year-old xylem, such as pit degradation or perhaps xylem aging itself. Results show that Q. serrata performs water conduction using highly efficient large vessels instead of unclear vessel refilling. In contrast, B. platyphylla transports water via less efficient but numerous vessels. If cavitation occurs, B. platyphylla improves water conduction by increasing the degree of vessel refilling.


Subject(s)
Betula/anatomy & histology , Betula/physiology , Quercus/anatomy & histology , Quercus/physiology , Water/metabolism , Xylem/anatomy & histology , Dehydration , Xylem/physiology
12.
Article in English | MEDLINE | ID: mdl-19521056

ABSTRACT

Petal color change in morning glory Ipomoea tricolor cv. Heavenly Blue, from red to blue, during the flower-opening period is due to an unusual increase in vacuolar pH (pHv) from 6.6 to 7.7 in colored epidermal cells. We clarified that this pHv increase is involved in tonoplast-localized Na+/H+ exchanger (NHX). However, the mechanism of pHv increase and the physiological role of NHX1 in petal cells have remained obscure. In this study, synchrony of petal-color change from red to blue, pHv increase, K+ accumulation, and cell expansion growth during flower-opening period were examined with special reference to ItNHX1. We concluded that ItNHX1 exchanges K+, but not Na+, with H+ to accumulate an ionic osmoticum in the vacuole, which is then followed by cell expansion growth. This function may lead to full opening of petals with a characteristic blue color.


Subject(s)
Flowers/physiology , Ipomoea/physiology , Pigmentation/physiology , Cell Size , Color , Flowers/cytology , Flowers/genetics , Flowers/ultrastructure , Gene Expression Regulation, Plant , Hydrogen-Ion Concentration , Ions , Ipomoea/cytology , Ipomoea/genetics , Ipomoea/ultrastructure , Models, Biological , Molecular Sequence Data , Plant Epidermis/cytology , Plant Epidermis/metabolism , Protoplasts/metabolism , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Time Factors
13.
Plant Cell Physiol ; 48(2): 243-51, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17179184

ABSTRACT

The entire flower of Tulipa gesneriana cv. Murasakizuisho is purple, except the bottom, which is blue. To elucidate the mechanism of the different color development in the same petal, we prepared protoplasts from the purple and blue epidermal regions and measured the flavonoid composition by HPLC, the vacuolar pH by a proton-selective microelectrode, and element contents by the inductively coupled plasma (ICP) method. Chemical analyses revealed that the anthocyanin and flavonol compositions in both purple and blue colored protoplasts were the same; delphinidin 3-O-rutinoside (1) and major three flavonol glycosides, manghaslin (2), rutin (3) and mauritianin (4). The vacuolar pH values of the purple and blue protoplasts were 5.5 and 5.6, respectively, without any significant difference. However, the Fe(3+) content in the blue protoplast was approximately 9.5 mM, which was 25 times higher than that in the purple protoplasts. We could reproduce the purple solution by mixing 1 with two equimolar concentrations of flavonol with lambda(vismax) = 539 nm, which was identical to that of the purple protoplasts. Furthermore, addition of Fe(3+) to the mixture of 1-4 gave the blue solution with lambda(vismax) = 615 nm identical to that of the blue protoplasts. We have established that Fe(3+) is essential for blue color development in the tulip.


Subject(s)
Ferric Compounds/chemistry , Pigments, Biological , Tulipa/physiology , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular , Protoplasts , Tandem Mass Spectrometry , Tulipa/chemistry , Vacuoles/chemistry
14.
Acta Crystallogr B ; 59(Pt 3): 404-15, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12761410

ABSTRACT

The process of the first-order solid-to-solid phase transition of 1-ethyl-3-(4-methylpentanoyl)urea (1) was observed by means of a detailed temperature-resolved single-crystal diffraction method, which resembles watching a series of stop-motion photographs. The transition consists of two elementary processes, one supramolecular and the other molecular. Crystal structures from before and after the phase transition are isostructural. The straight-ribbon-like one-dimensional hydrogen-bonding structure is formed and stacked to form a molecular layer. The geometry of the layer is retained during the phase transition. The relative position of the layer with its neighbours, on the other hand, changes gradually with increasing temperature. The change is accelerated at the temperature representing the start of the endotherm seen in the DSC curves of (1). The structural variation yields void space between the neighbouring layers. When the void space grows enough that the crystal is unstable, the 3-methylbutyl group on the last of the molecules turns into a disordered structure with drastic conformational changes to fill up the void space. The phase transition process is well supported with simple force-field calculations. A crystal of 1-(4-methylpentanoyl)-3-propylurea (2), which shows no solid-to-solid phase transitions, was also analysed by the same method for comparison.

SELECTION OF CITATIONS
SEARCH DETAIL
...