Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Blood Adv ; 8(3): 802-814, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-37939262

ABSTRACT

ABSTRACT: New treatments are needed for relapsed and refractory CD30-expressing lymphomas. We developed a novel anti-CD30 chimeric antigen receptor (CAR), designated 5F11-28Z. Safety and feasibility of 5F11-28Z-transduced T cells (5F11-Ts) were evaluated in a phase 1 dose escalation clinical trial. Patients with CD30-expressing lymphomas received 300 mg/m2 or 500 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine on days -5 to -3, followed by infusion of 5F11-Ts on day 0. Twenty-one patients received 5F11-T infusions. Twenty patients had classical Hodgkin lymphoma, and 1 had anaplastic large-cell lymphoma. Patients were heavily pretreated, with a median of 7 prior lines of therapy and substantial tumor burden, with a median metabolic tumor volume of 66.1 mL (range, 6.4-486.7 mL). The overall response rate was 43%; 1 patient achieved a complete remission. Median event-free survival was 13 weeks. Eleven patients had cytokine release syndrome (CRS; 52%). One patient had grade 3 CRS, and there was no grade 4/5 CRS. Neurologic toxicity was minimal. Nine patients (43%) had new-onset rashes. Two patients (9.5%) received extended courses of corticosteroids for prolonged severe rashes. Five patients (24%) had grade 3/4 cytopenias, with recovery time of ≥30 days, and 2 of these patients (9.5%) had prolonged cytopenias with courses complicated by life-threatening sepsis. The trial was halted early because of toxicity. Median peak blood CAR+ cells per µL was 26 (range, 1-513 cells per µL), but no infiltration of CAR+ cells was detected in lymph node biopsies. 5F11-Ts had low efficacy and substantial toxicities, which limit further development of 5F11-Ts. This trial was registered at www.clinicaltrials.gov as #NCT03049449.


Subject(s)
Hodgkin Disease , Lymphoma, Large-Cell, Anaplastic , Lymphoma , Receptors, Chimeric Antigen , Humans , Hodgkin Disease/drug therapy , Lymphoma, Large-Cell, Anaplastic/therapy , T-Lymphocytes , Receptors, Chimeric Antigen/therapeutic use
2.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38155568

ABSTRACT

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Immunotherapy, Adoptive , Bone Marrow/metabolism
3.
J Natl Compr Canc Netw ; 21(12): 1303-1311, 2023 12.
Article in English | MEDLINE | ID: mdl-38081142

ABSTRACT

Patients with relapsed or refractory multiple myeloma (RRMM) that is refractory to a proteasome inhibitor, an immunomodulatory drug (IMiD), and an anti-CD38 antibody (triple-class refractory MM) have poor outcomes. Recently, 2 classes of T-cell engaging therapies-CAR T-cell therapy and bispecific T-cell engaging antibodies (BsAbs)-have resulted in unprecedented response rates and survival outcomes in these heavily pretreated patients. The most common targets are BCMA and GPRC5D, with other targets in development. The main classes of adverse effects include cytokine release syndrome, neurotoxicity, infections, and cytopenias, as well as adverse effects unique to specific products. As of September 2023, 2 BCMA-targeting CAR-T cell products, 2 BCMA-targeting BsAbs, and 1 GPRC5D-targeting BsAb, are FDA-approved for standard-of-care use in patients with RRMM who received at least 4 prior lines of therapy, including prior treatment with a proteasome inhibitor, an IMiD, and an anti-CD38 antibody. Earlier-line use is under investigation and has shown promising results. Several other investigational CAR-T constructs and bispecific antibodies are in clinical development. As these therapies become more widely used, including in earlier-line setting, efforts to understand optimal sequencing and mitigate toxicities remain critical.


Subject(s)
Antibodies, Bispecific , Drug-Related Side Effects and Adverse Reactions , Multiple Myeloma , Humans , Multiple Myeloma/therapy , B-Cell Maturation Antigen , Proteasome Inhibitors/therapeutic use , Antibodies, Bispecific/therapeutic use , Antiviral Agents , Immunotherapy, Adoptive
4.
Hematol Oncol Clin North Am ; 37(6): 1169-1188, 2023 12.
Article in English | MEDLINE | ID: mdl-37349152

ABSTRACT

As chimeric antigen receptor (CAR) T-cell therapy is increasingly integrated into clinical practice across a range of malignancies, identifying and treating inflammatory toxicities will be vital to success. Early experiences with CD19-targeted CAR T-cell therapy identified cytokine release syndrome and neurotoxicity as key acute toxicities and led to unified initiatives to mitigate the influence of these complications. In this section, we provide an update on the current state of CAR T-cell-related toxicities, with an emphasis on emerging acute toxicities affecting additional organ systems and considerations for delayed toxicities and late effects.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes , Neoplasms/drug therapy
5.
Blood Adv ; 6(23): 6040-6050, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35939781

ABSTRACT

Cancer outcomes with chemotherapy are inferior in patients of minority racial/ethnic groups and those with obesity. Chimeric antigen receptor (CAR) T-cell therapy has transformed outcomes for relapsed/refractory hematologic malignancies, but whether its benefits extend commensurately to racial/ethnic minorities and patients with obesity is poorly understood. With a primary focus on patients with B-cell acute lymphoblastic leukemia (B-ALL), we retrospectively evaluated the impact of demographics and obesity on CAR T-cell therapy outcomes in adult and pediatric patients with hematologic malignancies treated with CAR T-cell therapy across 5 phase 1 clinical trials at the National Cancer Institute from 2012 to 2021. Among 139 B-ALL CAR T-cell infusions, 28.8% of patients were Hispanic, 3.6% were Black, and 29.5% were overweight/obese. No significant associations were found between race, ethnicity, or body mass index (BMI) and complete remission rates, neurotoxicity, or overall survival. Hispanic patients were more likely to experience severe cytokine release syndrome compared with White non-Hispanic patients even after adjusting for leukemia disease burden and age (odds ratio, 4.5; P = .001). A descriptive analysis of patients with multiple myeloma (n = 24) and non-Hodgkin lymphoma (n = 23) displayed a similar pattern to the B-ALL cohort. Our findings suggest CAR T-cell therapy may provide substantial benefit across a range of demographics characteristics, including for those populations who are at higher risk for chemotherapy resistance and relapse. However, toxicity profiles may vary. Therefore, efforts to improve access to CAR therapy for underrepresented populations and elucidate mechanisms of differential toxicity among demographic groups should be prioritized.


Subject(s)
Hematologic Neoplasms , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Adult , Humans , Child , Immunotherapy, Adoptive/adverse effects , Antigens, CD19 , Ethnicity , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Lymphoma, B-Cell/drug therapy , Hematologic Neoplasms/drug therapy , Recurrence , Obesity/complications , Obesity/therapy
6.
Blood Adv ; 5(23): 5312-5322, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34619768

ABSTRACT

Infections are a known complication of chimeric antigen receptor (CAR) T-cell therapy with data largely emerging from CD19 CAR T-cell targeting. As CAR T-cell therapy continues to evolve, infection risks and management thereof will become increasingly important to optimize outcomes across the spectrum of antigens and disease targeted. We retrospectively characterized infectious complications occurring in 162 children and adults treated among 5 phase 1 CAR T-cell clinical trials. Trials included targeting of CD19, CD22, disialoganglioside (GD2) or B-cell maturation antigen (BCMA). Fifty-three patients (32.7%) had 76 infections between lymphocyte depleting (LD) chemotherapy and day 30 (D30); with the majority of infections (61, 80.3%) occurring between day 0 (D0) and D30. By trial, the highest proportion of infections was seen with CD22 CAR T cells (n = 23/53; 43.4%), followed by BCMA CAR T cells (n = 9/24; 37.5%). By disease, patients with multiple myeloma had the highest proportion of infections (9/24; 37.5%) followed by acute lymphoblastic leukemia (36/102; 35.3%). Grade 4 infections were rare (n = 4; 2.5%). Between D0 and D30, bacteremia and bacterial site infections were the most common infection type. In univariate analysis, increasing prior lines of therapy, recent infection within 100 days of LD chemotherapy, corticosteroid or tocilizumab use, and fever and neutropenia were associated with a higher risk of infection. In a multivariable analysis, only prior lines of therapy and recent infection were associated with higher risk of infection. In conclusion, we provide a broad overview of infection risk within the first 30 days post infusion across a host of multiple targets and diseases, elucidating both unique characteristics and commonalities highlighting aspects important to improving patient outcomes.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Antigens, CD19 , Humans , Retrospective Studies , T-Lymphocytes
7.
Nat Rev Clin Oncol ; 18(2): 71-84, 2021 02.
Article in English | MEDLINE | ID: mdl-32978608

ABSTRACT

Despite several therapeutic advances over the past decade, multiple myeloma (MM) remains largely incurable, indicating a need for new treatment approaches. Chimeric antigen receptor (CAR) T cell therapy works by mechanisms distinct from those of other MM therapies and involves the modification of patient or donor T cells to target specific cell-surface antigens. B cell maturation antigen (BCMA) is expressed only on plasma cells, a small subset of B cells and MM cells, which makes it a suitable target antigen for such therapies. At the time of writing, data from >20 clinical trials involving anti-BCMA CAR T cells have demonstrated that patients with relapsed and/or refractory MM can achieve objective responses. These early investigations have been instrumental in demonstrating short-term safety and efficacy; however, most patients do not have disease remission lasting >18 months. Attempts to reduce or delay the onset of relapsed disease are underway and include identifying additional CAR T cell target antigens and methods of enhancing BCMA expression on MM cells. Engineering CAR T cells to enhance both the activity and safety of treatment continues to be a promising avenue for improvement. In this Review we summarize data from clinical trials that have been carried out to date, describe novel antigens that could be targeted in the future, and highlight potential future innovations that could enhance the efficacy and/or reduce the toxicities associated with CAR T cell therapies.


Subject(s)
Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , B-Cell Maturation Antigen/immunology , Clinical Trials as Topic , Humans , Immunotherapy, Adoptive/adverse effects , Molecular Targeted Therapy/methods , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Neoplastic Stem Cells/pathology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/chemistry , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
9.
Nat Med ; 26(2): 270-280, 2020 02.
Article in English | MEDLINE | ID: mdl-31959992

ABSTRACT

Anti-CD19 chimeric antigen receptor (CAR)-expressing T cells are an effective treatment for B-cell lymphoma, but often cause neurologic toxicity. We treated 20 patients with B-cell lymphoma on a phase I, first-in-human clinical trial of T cells expressing the new anti-CD19 CAR Hu19-CD828Z (NCT02659943). The primary objective was to assess safety and feasibility of Hu19-CD828Z T-cell therapy. Secondary objectives included assessments of blood levels of CAR T cells, anti-lymphoma activity, second infusions and immunogenicity. All objectives were met. Fifty-five percent of patients who received Hu19-CD828Z T cells obtained complete remission. Hu19-CD828Z T cells had clinical anti-lymphoma activity similar to that of T cells expressing FMC63-28Z, an anti-CD19 CAR tested previously by our group, which contains murine binding domains and is used in axicabtagene ciloleucel. However, severe neurologic toxicity occurred in only 5% of patients who received Hu19-CD828Z T cells, whereas 50% of patients who received FMC63-28Z T cells experienced this degree of toxicity (P = 0.0017). T cells expressing Hu19-CD828Z released lower levels of cytokines than T cells expressing FMC63-28Z. Lower levels of cytokines were detected in blood from patients who received Hu19-CD828Z T cells than in blood from those who received FMC63-28Z T cells, which could explain the lower level of neurologic toxicity associated with Hu19-CD828Z. Levels of cytokines released by CAR-expressing T cells particularly depended on the hinge and transmembrane domains included in the CAR design.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Receptors, Chimeric Antigen/immunology , Adolescent , Adult , Aged , Cytokines/metabolism , Feasibility Studies , Female , Humans , K562 Cells , Male , Middle Aged , Phenotype , Protein Domains , Remission Induction , Young Adult
10.
J Immunother Cancer ; 7(1): 197, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31345267

ABSTRACT

BACKGROUND: Strategies to improve activity of immune checkpoint inhibitors are needed. We hypothesized enhanced DNA damage by olaparib, a PARP inhibitor, and reduced VEGF signaling by cediranib, a VEGFR1-3 inhibitor, would complement anti-tumor activity of durvalumab, a PD-L1 inhibitor, and the 3-drug combination would be tolerable. METHODS: This phase 1 study tested the 3-drug combination in a 3 + 3 dose escalation. Cediranib was taken intermittently (5 days on/2 days off) at 15 or 20 mg (dose levels 1 and 2, respectively) with durvalumab 1500 mg IV every 4 weeks, and olaparib tablets 300 mg twice daily. The primary end point was the recommended phase 2 dose (RP2D). Response rate, pharmacokinetic (PK), and correlative analyses were secondary endpoints. RESULTS: Nine patients (7 ovarian/1 endometrial/1 triple negative breast cancers, median 3 prior therapies [2-6]) were treated. Grade 3/4 adverse events include hypertension (1/9), anemia (1/9) and lymphopenia (3/9). No patients experienced dose limiting toxicities. The RP2D is cediranib, 20 mg (5 days on/2 days off) with full doses of durvalumab and olaparib. Four patients had partial responses (44%) and 3 had stable disease lasting ≥6 months, yielding a 67% clinical benefit rate. No significant effects on olaparib or cediranib PK parameters from the presence of durvalumab, or the co-administration of cediranib or olaparib were identified. Tumoral PD-L1 expression correlated with clinical benefit but cytokines and peripheral immune subsets did not. CONCLUSIONS: The RP2D is tolerable and has preliminary activity in recurrent women's cancers. A phase 2 expansion study is now enrolling for recurrent ovarian cancer patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02484404. Registered June 29, 2015.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Endometrial Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Phthalazines/administration & dosage , Piperazines/administration & dosage , Quinazolines/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Adult , Aged , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , B7-H1 Antigen/metabolism , Drug Administration Schedule , Endometrial Neoplasms/metabolism , Female , Humans , Middle Aged , Neoplasm Recurrence, Local/metabolism , Ovarian Neoplasms/metabolism , Phthalazines/pharmacokinetics , Piperazines/pharmacokinetics , Quinazolines/pharmacokinetics , Treatment Outcome , Triple Negative Breast Neoplasms/metabolism
11.
J Clin Oncol ; 36(22): 2267-2280, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29812997

ABSTRACT

Purpose Therapies with novel mechanisms of action are needed for multiple myeloma (MM). T cells can be genetically modified to express chimeric antigen receptors (CARs), which are artificial proteins that target T cells to antigens. B-cell maturation antigen (BCMA) is expressed by normal and malignant plasma cells but not normal essential cells. We conducted the first-in-humans clinical trial, to our knowledge, of T cells expressing a CAR targeting BCMA (CAR-BCMA). Patients and Methods Sixteen patients received 9 × 106 CAR-BCMA T cells/kg at the highest dose level of the trial; we are reporting results of these 16 patients. The patients had a median of 9.5 prior lines of MM therapy. Sixty-three percent of patients had MM refractory to the last treatment regimen before protocol enrollment. T cells were transduced with a γ-retroviral vector encoding CAR-BCMA. Patients received CAR-BCMA T cells after a conditioning chemotherapy regimen of cyclophosphamide and fludarabine. Results The overall response rate was 81%, with 63% very good partial response or complete response. Median event-free survival was 31 weeks. Responses included eradication of extensive bone marrow myeloma and resolution of soft-tissue plasmacytomas. All 11 patients who obtained an anti-MM response of partial response or better and had MM evaluable for minimal residual disease obtained bone marrow minimal residual disease-negative status. High peak blood CAR+ cell levels were associated with anti-MM responses. Cytokine-release syndrome toxicities were severe in some cases but were reversible. Blood CAR-BCMA T cells were predominantly highly differentiated CD8+ T cells 6 to 9 days after infusion. BCMA antigen loss from MM was observed. Conclusion CAR-BCMA T cells had substantial activity against heavily treated relapsed/refractory MM. Our results should encourage additional development of CAR T-cell therapies for MM.


Subject(s)
B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B-Cell Maturation Antigen/genetics , Cyclophosphamide/administration & dosage , Cytokines/blood , Cytokines/immunology , Humans , Multiple Myeloma/blood , Multiple Myeloma/immunology , Prognosis , Receptors, Chimeric Antigen/blood , T-Lymphocytes/immunology , Transplantation Conditioning , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
12.
Semin Oncol ; 44(3): 218-225, 2017 06.
Article in English | MEDLINE | ID: mdl-29248133

ABSTRACT

BACKGROUND: Twenty percent of patients with classical Hodgkin Lymphoma (cHL) have aggressive disease defined as relapsed or refractory disease to initial therapy. At present we cannot identify these patients pre-treatment. The microenvironment is very important in cHL because non-cancer cells constitute the majority of the cells in these tumors. Non-cancer intra-tumoral cells, such as tumor-associated macrophages (TAMs) have been shown to promote tumor growth in cHL via crosstalk with the cancer cells. Metabolic heterogeneity is defined as high mitochondrial metabolism in some tumor cells and glycolysis in others. We hypothesized that there are metabolic differences between cancer cells and non-cancer tumor cells, such as TAMs and tumor-infiltrating lymphocytes in cHL and that greater metabolic differences between cancer cells and TAMs are associated with poor outcomes. METHODS: A case-control study was conducted with 22 tissue samples of cHL at diagnosis from a single institution. The case samples were from 11 patients with aggressive cHL who had relapsed after standard treatment with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) or were refractory to this treatment. The control samples were from 11 patients with cHL who achieved a remission and never relapsed after ABVD. Reactive non-cancerous lymph nodes from four subjects served as additional controls. Samples were stained by immunohistochemistry for three metabolic markers: translocase of the outer mitochondrial membrane 20 (TOMM20), monocarboxylate transporter 1 (MCT1), and monocarboxylate transporter 4 (MCT4). TOMM20 is a marker of mitochondrial oxidative phosphorylation (OXPHOS) metabolism. Monocarboxylate transporter 1 (MCT1) is the main importer of lactate into cells and is a marker of OXPHOS. Monocarboxylate transporter 4 (MCT4) is the main lactate exporter out of cells and is a marker of glycolysis. The immunoreactivity for TOMM20, MCT1, and MCT4 was scored based on staining intensity and percentage of positive cells, as follows: 0 for no detectable staining in > 50% of cells; 1+ for faint to moderate staining in > 50% of cells, and 2+ for high or strong staining in > 50% of cells. RESULTS: TOMM20, MCT1, and MCT4 expression was significantly different in Hodgkin and Reed Sternberg (HRS) cells, which are the cancerous cells in cHL compared with TAMs and tumor-associated lymphocytes. HRS have high expression of TOMM20 and MCT1, while TAMs have absent expression of TOMM20 and MCT1 in all but two cases. Tumor-infiltrating lymphocytes have low TOMM20 expression and absent MCT1 expression. Conversely, high MCT4 expression was found in TAMs, but absent in HRS cells in all but one case. Tumor-infiltrating lymphocytes had absent MCT4 expression. Reactive lymph nodes in contrast to cHL tumors had low TOMM20, MCT1, and MCT4 expression in lymphocytes and macrophages. High TOMM20 and MCT1 expression in cancer cells with high MCT4 expression in TAMs is a signature of high metabolic heterogeneity between cancer cells and the tumor microenvironment. A high metabolic heterogeneity signature was associated with relapsed or refractory cHL with a hazard ratio of 5.87 (1.16-29.71; two-sided P < .05) compared with the low metabolic heterogeneity signature. CONCLUSION: Aggressive cHL exhibits features of metabolic heterogeneity with high mitochondrial metabolism in cancer cells and high glycolysis in TAMs, which is not seen in reactive lymph nodes. Future studies will need to confirm the value of these markers as prognostic and predictive biomarkers in clinical practice. Treatment intensity may be tailored in the future to the metabolic profile of the tumor microenvironment and drugs that target metabolic heterogeneity may be valuable in this disease.


Subject(s)
Glycolysis , Hodgkin Disease/metabolism , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Monocarboxylic Acid Transporters/metabolism , Neoplasm Recurrence, Local/metabolism , Oxidative Phosphorylation , Receptors, Cell Surface/metabolism , Reed-Sternberg Cells/metabolism , Symporters/metabolism , Tumor Microenvironment , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bleomycin/administration & dosage , Case-Control Studies , Dacarbazine/administration & dosage , Doxorubicin/administration & dosage , Female , Hodgkin Disease/drug therapy , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , Male , Middle Aged , Mitochondrial Precursor Protein Import Complex Proteins , Muscle Proteins/metabolism , Remission Induction , Vinblastine/administration & dosage
13.
Blood ; 130(24): 2594-2602, 2017 12 14.
Article in English | MEDLINE | ID: mdl-28928126

ABSTRACT

Multiple myeloma (MM) is a nearly always incurable malignancy of plasma cells, so new approaches to treatment are needed. T-cell therapies are a promising approach for treating MM, with a mechanism of action different than those of standard MM treatments. Chimeric antigen receptors (CARs) are fusion proteins incorporating antigen-recognition domains and T-cell signaling domains. T cells genetically engineered to express CARs can specifically recognize antigens. Success of CAR-T cells (CAR-Ts) against leukemia and lymphoma has encouraged development of CAR-T therapies for MM. Target antigens for CARs must be expressed on malignant cells, but expression on normal cells must be absent or limited. B-cell maturation antigen is expressed by normal and malignant plasma cells. CAR-Ts targeting B-cell maturation antigen have demonstrated significant antimyeloma activity in early clinical trials. Toxicities in these trials, including cytokine release syndrome, have been similar to toxicities observed in CAR-T trials for leukemia. Targeting postulated CD19+ myeloma stem cells with anti-CD19 CAR-Ts is a novel approach to MM therapy. MM antigens including CD138, CD38, signaling lymphocyte-activating molecule 7, and κ light chain are under investigation as CAR targets. MM is genetically and phenotypically heterogeneous, so targeting of >1 antigen might often be required for effective treatment of MM with CAR-Ts. Integration of CAR-Ts with other myeloma therapies is an important area of future research. CAR-T therapies for MM are at an early stage of development but have great promise to improve MM treatment.


Subject(s)
Multiple Myeloma/immunology , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/immunology , T-Lymphocytes/immunology , Antigens, CD19/immunology , Humans , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Neoplastic Stem Cells/immunology , Plasma Cells/immunology , Plasma Cells/pathology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
14.
Front Cell Dev Biol ; 5: 27, 2017.
Article in English | MEDLINE | ID: mdl-28421181

ABSTRACT

Introduction: Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes. Methods: MCT1 expression was evaluated by immunohistochemistry on tissue micro-arrays (TMA) obtained through our tumor bank. Two hundred and fifty-seven cases were analyzed: 180 cases were estrogen receptor and/or progesterone receptor positive (ER+ and/or PR+), 62 cases were human epidermal growth factor receptor 2 positive (HER2+), and 56 cases were triple negative breast cancers (TNBC). MCT1 expression was quantified by digital pathology with Aperio software. The intensity of the staining was measured on a continuous scale (0-black to 255-bright white) using a co-localization algorithm. Statistical analysis was performed using a linear mixed model. Results: High MCT1 expression was more commonly found in TNBC compared to ER+ and/or PR+ and compared to HER-2+ (p < 0.001). Tumors with an in-situ component were less likely to stain strongly for MCT1 (p < 0.05). High nuclear grade was associated with higher MCT1 staining (p < 0.01). Higher T stage tumors were noted to have a higher expression of MCT1 (p < 0.05). High MCT1 staining in cancer cells was associated with shorter progression free survival, increased risk of recurrence, and larger size independent of TNBC status (p < 0.05). Conclusion: MCT1 expression, which is a marker of high catabolite uptake and mitochondrial metabolism, is associated with recurrence in breast invasive ductal carcinoma. MCT1 expression as quantified with digital image analysis may be useful as a prognostic biomarker and to design clinical trials using MCT1 inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...