Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Blood Adv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669344

ABSTRACT

Blood endothelial cells control the hemostatic and inflammatory response by secreting von Willebrand factor (VWF) and P-selectin from storage organelles called Weibel-Palade bodies (WPB). Actin-associated motor proteins regulate this secretory pathway at multiple points. Prior to fusion, myosin Va forms a complex that anchors WPBs to peripheral actin structures allowing maturation of content. Post-fusion, an actomyosin ring/coat is recruited and compresses the WPB to forcibly expel the largest VWF multimers. Here we provide the first evidence for the involvement of class I myosins during regulated VWF secretion. We show that the unconventional myosin-1C (Myo1c) is recruited post-fusion via its pleckstrin homology domain in an actin-independent process. This provides a link between the actin ring and phosphatidylinositol 4,5-bisphosphate (PIP2) at the membrane of the fused organelle and is necessary to ensure maximal VWF secretion. This is an active process requiring Myo1c ATPase activity as inhibition of class I myosins using the inhibitor Pentachloropseudilin or expression of an ATPase deficient Myo1c rigor mutant perturbs the expulsion of VWF and alters the kinetics of the exocytic actin ring. These data offer a novel insight into the control of an essential physiological process and provide a new way in which it can be regulated.

2.
J Cardiothorac Surg ; 18(1): 252, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620956

ABSTRACT

OBJECTIVES: Performing wedge resection rather than lobectomy for primary lung cancer remains controversial. Recent studies demonstrate no survival advantage for non-anatomical resection compared to lobectomy in patients with early-stage lung cancer. The objective of this study was to investigate whether in patients with T1 tumours, non-anatomical wedge resection is associated with equivalent survival to lobectomy. METHODS: This was a retrospective cohort study of patients who underwent lung resection at the Lancashire Cardiac Centre between April 2005 and April 2018. Patients were subjected to multidisciplinary team discussion. The extent of resection was decided by the team based on British Thoracic Society guidelines. The primary outcome was overall survival. Propensity matching of patients with T1 tumours was also performed to determine whether differences in survival rates exist in a subset of these patients with balanced pre-operative characteristics. RESULTS: There were 187 patients who underwent non-anatomical wedge resection and 431 patients who underwent lobectomy. Cox modelling demonstrated no survival difference between groups for the first 1.6 years then a risk of death 3-fold higher for wedge resection group after 1.6 years (HR 3.14, CI 1.98-4.79). Propensity matching yielded 152 pairs for which 5-year survival was 66.2% for the lobectomy group and 38.5% for the non-anatomical wedge group (SMD = 0.58, p = 0.003). CONCLUSIONS: Non-anatomical wedge resection was associated with significantly reduced 5-year survival compared to lobectomy in matched patients. Lobectomy should remain the standard of care for patients with early-stage lung cancer who are fit enough to undergo surgical resection.


Subject(s)
Lung Neoplasms , Humans , Retrospective Studies , Lung Neoplasms/surgery , Heart , Thorax
3.
Cells ; 9(6)2020 06 11.
Article in English | MEDLINE | ID: mdl-32545391

ABSTRACT

Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Exocytosis/physiology , Secretory Vesicles/metabolism , Animals , Humans , Membrane Fusion , Myosins/metabolism
4.
Sci Rep ; 9(1): 11973, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427591

ABSTRACT

Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis.


Subject(s)
Actins/metabolism , Exocytosis/physiology , Microtubules/metabolism , Actins/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/ultrastructure , Animals , Biomarkers , Cell Membrane/metabolism , Coated Vesicles/drug effects , Coated Vesicles/metabolism , Fluorescent Antibody Technique , Male , Membrane Fusion , Microtubules/genetics , Protein Binding , Protein Transport , Rats , Secretory Vesicles/metabolism , Secretory Vesicles/ultrastructure , Tubulin Modulators/pharmacology
5.
ACS Nano ; 12(2): 1188-1202, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29357226

ABSTRACT

Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-ß release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Lung/drug effects , Metal Nanoparticles/chemistry , Mitochondria/drug effects , Orthomyxoviridae/drug effects , Silver/pharmacology , Tretinoin/pharmacology , Animals , Antiviral Agents/chemistry , Autophagy/drug effects , Cell Line, Tumor , Dogs , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Lung/metabolism , Lung/virology , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/virology , Microbial Sensitivity Tests , Mitochondria/metabolism , Silver/chemistry , Tretinoin/chemistry
6.
Biochim Biophys Acta ; 1863(8): 2124-34, 2016 08.
Article in English | MEDLINE | ID: mdl-27155084

ABSTRACT

The molecular basis involving adsorption of pulmonary surfactant at the respiratory air-liquid interface and the specific roles of the surfactant proteins SP-B and SP-C in this process have not been completely resolved. The reasons might be found in the largely unknown structural assembly in which surfactant lipids and proteins are released from alveolar type II cells, and the difficulties to sample, manipulate and visualize the adsorption of these micron-sized particles at an air-liquid interface under appropriate physiological conditions. Here, we introduce several approaches to overcome these problems. First, by immunofluorescence we could demonstrate the presence of SP-B and SP-C on the surface of exocytosed surfactant particles. Second, by sampling the released particles and probing their adsorptive capacity we could demonstrate a remarkably high rate of interfacial adsorption, whose rate and extent was dramatically affected by treatment with antibodies against SP-B and SP-C. The effect of both antibodies was additive and specific. Third, direct microscopy of an inverted air-liquid interface revealed that the blocking effect is due to a stabilization of the released particles when contacting the air-liquid interface, precluding their transformation and the formation of surface films. We conclude that SP-B and SP-C are acting as essential, preformed molecular keys in the initial stages of surfactant unpacking and surface film formation. We further propose that surfactant activation might be transduced by a conformational change of the surfactant proteins upon contact with surface forces acting on the air-liquid interface.


Subject(s)
Alveolar Epithelial Cells/metabolism , Pulmonary Surfactant-Associated Protein B/physiology , Pulmonary Surfactant-Associated Protein C/physiology , Adsorption , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/ultrastructure , Animals , Boron Compounds , Cells, Cultured , Exocytosis , Fluorescent Dyes , Heterocyclic Compounds, 3-Ring , Hydrophobic and Hydrophilic Interactions , Microscopy, Confocal , Organelles/drug effects , Organelles/metabolism , Pulmonary Surfactant-Associated Protein B/antagonists & inhibitors , Pulmonary Surfactant-Associated Protein B/pharmacology , Pulmonary Surfactant-Associated Protein C/antagonists & inhibitors , Pulmonary Surfactant-Associated Protein C/pharmacology , Pulmonary Surfactants/chemistry , Rats , Rats, Sprague-Dawley , Surface Properties , Surface Tension
7.
J Cell Sci ; 129(8): 1685-96, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26940917

ABSTRACT

Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.


Subject(s)
Alveolar Epithelial Cells/physiology , Exocytosis , Myosin Type I/metabolism , Secretory Vesicles/physiology , Actin Cytoskeleton/metabolism , Animals , Bodily Secretions , Cells, Cultured , Exocytosis/genetics , Male , Membrane Fusion/genetics , Myosin Type I/genetics , Pulmonary Surfactants/metabolism , Rats , Rats, Sprague-Dawley
8.
Cell Calcium ; 58(6): 628-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26560688

ABSTRACT

Ambroxol (Ax) is a frequently prescribed drug used to facilitate mucociliary clearance, but its mode of action is yet poorly understood. Here we show by X-ray spectroscopy that Ax accumulates in lamellar bodies (LBs), the surfactant storing, secretory lysosomes of type II pneumocytes. Using lyso- and acidotropic substances in combination with fluorescence imaging we confirm that these vesicles belong to the class of acidic Ca(2+) stores. Ax lead to a significant neutralization of LB pH, followed by intracellular Ca(2+) release, and to a dose-dependent surfactant exocytosis. Ax-induced Ca(2+) release was significantly reduced and slowed down by pretreatment of the cells with bafilomycin A1 (Baf A1), an inhibitor of the vesicular H(+) ATPase. These results could be nearly reproduced with NH3/NH4(+). The findings suggest that Ax accumulates within LBs and severely affects their H(+) and Ca(2+) homeostasis. This is further supported by an Ax-induced change of nanostructural assembly of surfactant layers. We conclude that Ax profoundly affects LBs presumably by disordering lipid bilayers and by acting as a weak base. The pH change triggers - at least in part - Ca(2+) release from stores and secretion of surfactant from type II cells. This novel mechanism of Ax as a lysosomal secretagogue may also play a role for its recently discussed use for lysosomal storage and other degenerative diseases.


Subject(s)
Ambroxol/pharmacology , Calcium/metabolism , Exocytosis/drug effects , Lysosomes/drug effects , Secretory Vesicles/drug effects , Alveolar Epithelial Cells , Animals , Cell Separation/methods , Exocytosis/physiology , Hydrogen-Ion Concentration , Rats, Sprague-Dawley
9.
J Cell Sci ; 128(6): 1193-203, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25637593

ABSTRACT

In many secretory cells actin and myosin are specifically recruited to the surface of secretory granules following their fusion with the plasma membrane. Actomyosin-dependent compression of fused granules is essential to promote active extrusion of cargo. However, little is known about molecular mechanisms regulating actin coat formation and contraction. Here, we provide a detailed kinetic analysis of the molecules regulating actin coat contraction on fused lamellar bodies in primary alveolar type II cells. We demonstrate that ROCK1 and myosin light chain kinase 1 (MLCK1, also known as MYLK) translocate to fused lamellar bodies and activate myosin II on actin coats. However, myosin II activity is not sufficient for efficient actin coat contraction. In addition, cofilin-1 and α-actinin translocate to actin coats. ROCK1-dependent regulated actin depolymerisation by cofilin-1 in cooperation with actin crosslinking by α-actinin is essential for complete coat contraction. In summary, our data suggest a complementary role for regulated actin depolymerisation and crosslinking, and myosin II activity, to contract actin coats and drive secretion.


Subject(s)
Actin Cytoskeleton , Actins/metabolism , Membrane Fusion/physiology , Myosin Type II/metabolism , Secretory Vesicles/metabolism , Actinin/genetics , Actinin/metabolism , Actins/genetics , Animals , Blotting, Western , Cells, Cultured , Exocytosis/physiology , Fluorescent Antibody Technique , Myosin Type II/genetics , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Phosphorylation , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
10.
PLoS One ; 9(1): e84926, 2014.
Article in English | MEDLINE | ID: mdl-24465451

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca(2+) release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca(2+)-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca(2+) signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca(2+) signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.


Subject(s)
Calcium Signaling , Exocytosis/genetics , Organelles/metabolism , Protein Serine-Threonine Kinases/deficiency , Pulmonary Alveoli/metabolism , Pulmonary Surfactants/metabolism , Adenosine Triphosphate/pharmacology , Animals , Biomarkers/metabolism , Calcium/metabolism , Exocytosis/drug effects , Gene Deletion , Gene Expression , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Organelles/drug effects , Organelles/ultrastructure , Protein Serine-Threonine Kinases/genetics , Pulmonary Alveoli/pathology , Rats , Secretory Vesicles/drug effects , Secretory Vesicles/metabolism , Secretory Vesicles/ultrastructure
11.
Front Cell Neurosci ; 7: 171, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24115920

ABSTRACT

In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca(2+) influx and elevation of the intracellular Ca(2+) concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca(2+) entry (FACE) in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca(2+) influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air-liquid interphase thereby "activating" it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.

12.
J Cell Sci ; 125(Pt 11): 2765-74, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22427691

ABSTRACT

Secretion of vesicular contents by exocytosis is a fundamental cellular process. Increasing evidence suggests that post-fusion events play an important role in determining the composition and quantity of the secretory output. In particular, regulation of fusion pore dilation and closure is considered a key regulator of the post-fusion phase. However, depending on the nature of the cargo, additional mechanisms might be essential to facilitate effective release. We have recently described that in alveolar type II (ATII) cells, lamellar bodies (LBs), which are secretory vesicles that store lung surfactant, are coated with actin following fusion with the plasma membrane. Surfactant, a lipoprotein complex, does not readily diffuse out of fused LBs following opening and dilation of the fusion pore. Using fluorescence microscopy, atomic force microscopy and biochemical assays, we present evidence that actin coating and subsequent contraction of the actin coat is essential to facilitate surfactant secretion. Latrunculin B prevents actin coating of fused LBs and inhibits surfactant secretion almost completely. Simultaneous imaging of the vesicle membrane and the actin coat revealed that contraction of the actin coat compresses the vesicle following fusion. This leads to active extrusion of vesicle contents. Initial actin coating of fused vesicles is dependent on activation of Rho and formin-dependent actin nucleation. Actin coat contraction is facilitated by myosin II. In summary, our data suggest that fusion pore opening and dilation itself is not sufficient for release of bulky vesicle cargos and that active extrusion mechanisms are required.


Subject(s)
Actins/metabolism , Fetal Proteins/metabolism , Membrane Fusion , Microfilament Proteins/metabolism , Myosin Type II/metabolism , Nuclear Proteins/metabolism , Pulmonary Surfactants/metabolism , Secretory Vesicles/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Depsipeptides/pharmacology , Extracellular Space/drug effects , Extracellular Space/metabolism , Fluorescence Recovery After Photobleaching , Formins , Membrane Fusion/drug effects , Microscopy, Atomic Force , Rats , Rats, Sprague-Dawley , Secretory Vesicles/drug effects , Secretory Vesicles/ultrastructure , Thiazolidines/pharmacology
13.
Chem Senses ; 37(1): 65-75, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21778519

ABSTRACT

Amino acids reliably evoke strong responses in fish olfactory system. The molecular olfactory receptors (ORs) are located in the membrane of cilia and microvilli of the olfactory receptor neurons (ORNs). Axons of ORNs converge on specific olfactory bulb (OB) glomeruli and the neural responses of ORNs expressing single Ors activate glomerular activity patterns typical for each amino acid. Chemically similar amino acids activate more similar glomerular activity patterns then chemically different amino acids. Differential glomerular activity patterns are the structural basis for amino acid perception and discrimination. We studied olfactory discrimination in zebrafish Danio rerio (Hamilton 1822) by conditioning them to respond to each of the following amino acids: L-Ala, L-Val, L-Leu, L-Arg, and L-Phe. Subsequently, zebrafish were tested for food searching activities with 18 nonconditioned amino acids. The food searching activity during 90 s of the test period was significantly greater after stimulation with the conditioned stimulus than with the nonconditioned amino acid. Zebrafish were able to discriminate all the tested amino acids except L-Ile from L-Val and L-Phe from L-Tyr. We conclude that zebrafish have difficulties discriminating amino acid odorants that evoke highly similar chemotopic patterns of activity in the OB.


Subject(s)
Amino Acids/analysis , Amino Acids/chemistry , Discrimination Learning/physiology , Olfactory Bulb/physiology , Zebrafish/physiology , Amino Acids/pharmacology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Discrimination Learning/drug effects , Olfactory Bulb/drug effects , Swimming/physiology
14.
Cell Microbiol ; 14(3): 299-315, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22073982

ABSTRACT

Streptolysin O (SLO) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pyogenes. SLO induces diverse types of Ca(2+) signalling in host cells which play a key role in membrane repair and cell fate determination. The mechanisms behind SLO-induced Ca(2+) signalling remain poorly understood. Here, we show that in NCI-H441 cells, wild-type SLO as well as non-pore-forming mutant induces long-lasting intracellular Ca(2+) oscillations via IP(3) -mediated depletion of intracellular stores and activation of store-operated Ca(2+) (SOC) entry. SLO-induced activation of SOC entry was confirmed by Ca(2+) add-back experiments, pharmacologically and by overexpression as well as silencing of STIM1 and Orai1 expression. SLO also activated SOC entry in primary cultivated alveolar type II (ATII) cells but Ca(2+) oscillations were comparatively short-lived in nature. Comparison of STIM1 and Orai1 revealed a differential expression pattern in H441 and ATII cells. Overexpression of STIM1 and Orai1 proteins in ATII cells changed the short-lived oscillatory response into a long-lived one. Thus, we conclude that SLO-mediated Ca(2+) signalling involves Ca(2+) release from intracellular stores and STIM1/Orai1-dependent SOC entry. The phenotype of Ca(2+) signalling depends on STIM1 and Orai1 expression levels. Our findings suggest a new role for SOC entry-associated proteins in S. pyogenes-induced lung infection and pneumonia.


Subject(s)
Calcium Channels/physiology , Calcium Signaling , Epithelial Cells/metabolism , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Streptolysins/physiology , Animals , Bacterial Proteins/pharmacology , Bacterial Proteins/physiology , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Diglycerides/metabolism , Epithelial Cells/drug effects , Host-Pathogen Interactions , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Lung/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein , Primary Cell Culture , Protein Transport , Rats , Rats, Sprague-Dawley , Respiratory Tract Infections/microbiology , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Streptolysins/pharmacology , Stromal Interaction Molecule 1
15.
Biomech Model Mechanobiol ; 11(7): 959-71, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22190268

ABSTRACT

A commonly used technique to investigate strain-induced responses of adherent cells is culturing them on an elastic membrane and globally stretching the membrane. However, it is virtually impossible to acquire microscopic images immediately after the stretch with this method. Using a newly developed technique, we recorded the strain-induced increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in rat primary alveolar type II (ATII) cells at an acquisition rate of 30ms and without any temporal delay. We can show that the onset of the mechanically induced rise in [Ca(2+)](c) was very fast (<30 ms), and Ca(2+) entry was immediately abrogated when the stimulus was withdrawn. This points at a direct mechanical activation of an ion channel. RT-PCR revealed high expression of TRPV2 in ATII cells, and silencing TRPV2, as well as blocking TRPV channels with ruthenium red, significantly reduced the strain-induced Ca(2+) response. Moreover, the usually homogenous pattern of the strain-induced [Ca(2+)](c) increase was converted into a point-like response after both treatments. Also interfering with actin/myosin and integrin binding inhibited the strain-induced increase of [Ca(2)](c). We conclude that TRPV2 participates in strain-induced Ca(2+) entry in ATII cells and suggest a direct mechanical activation of the channel that depends on FAs and actin/myosin. Furthermore, our results underline the importance of cell strain systems that allow high temporal resolution.


Subject(s)
Calcium/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/physiology , TRPV Cation Channels/physiology , Actins/chemistry , Algorithms , Animals , Biomechanical Phenomena , Calcium/chemistry , Cells, Cultured , Elasticity , Equipment Design , Gene Silencing , Ions , Male , Myosins/chemistry , Rats , Rats, Sprague-Dawley , Ruthenium Red/pharmacology , Silicones/chemistry , Stress, Mechanical , TRPV Cation Channels/metabolism , Time Factors
16.
Proc Natl Acad Sci U S A ; 108(35): 14503-8, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21844344

ABSTRACT

Ca(2+) is considered a key element in multiple steps during regulated exocytosis. During the postfusion phase, an elevated cytoplasmic Ca(2+) concentration ([Ca(2+)])(c) leads to fusion pore dilation. In neurons and neuroendocrine cells, this results from activation of voltage-gated Ca(2+) channels in the plasma membrane. However, these channels are activated in the prefusion stage, and little is known about Ca(2+) entry mechanisms during the postfusion stage. This may be particularly important for slow and nonexcitable secretory cells. We recently described a "fusion-activated" Ca(2+) entry (FACE) mechanism in alveolar type II (ATII) epithelial cells. FACE follows initial fusion pore opening with a delay of 200-500 ms. The site, molecular mechanisms, and functions of this mechanism remain unknown, however. Here we show that vesicle-associated Ca(2+) channels mediate FACE. Using RT-PCR, Western blot analysis, and immunofluorescence, we demonstrate that P2X(4) receptors are expressed on exocytotic vesicles known as lamellar bodies (LBs). Electrophysiological, pharmacological, and genetic data confirm that FACE is mediated via these vesicular P2X(4) receptors. Furthermore, analysis of fluorophore diffusion into and out of individual vesicles after exocytotic fusion provides evidence that FACE regulates postfusion events of LB exocytosis via P2X(4). Fusion pore dilation was clearly correlated with the amplitude of FACE, and content release from fused LBs was accelerated in fusions followed by FACE. Based on these findings, we propose a model for regulation of the exocytotic postfusion phase in nonexcitable cells in which Ca(2+) influx via vesicular Ca(2+) channels regulates fusion pore expansion and vesicle content release.


Subject(s)
Alveolar Epithelial Cells/metabolism , Calcium/metabolism , Exocytosis , Membrane Fusion , Receptors, Purinergic P2X4/physiology , Secretory Vesicles/metabolism , Adenosine Triphosphate/metabolism , Animals , Base Sequence , Molecular Sequence Data , Rats , Rats, Sprague-Dawley
17.
Commun Integr Biol ; 4(6): 796-8, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22446559

ABSTRACT

Regulated secretion is a fundamental cellular process in many different types of eukaryotic cells with Ca2(+-)triggered exocytosis taking centre stage. Elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) regulate multiple steps from vesicle fusion with the plasma membrane to fusion pore dilation and subsequent retrieval of spent vesicles. The general view is that the rise in [Ca(2+)](c) initiates during the pre-fusion stage and either results from Ca(2+)-influx via Ca(2+) channels in the plasma membrane or from release from intracellular Ca(2+)-stores. However, there is increasing evidence that exocytosis of secretory vesicles triggers additional, localised Ca(2+) signals via insertion of vesicle-associated Ca(2+) channels into the cell surface. These restricted Ca(2+) signals following fusion are ideally suited for regulating the post-fusion fate of individual secretory vesicles. In invertebrates they have been shown to trigger compensatory endocytosis.  Recently we have reported that exocytosis of lamellar bodies in alveolar type II epithelial cells results in a localized Ca(2+)-influx via vesicular P2X(4) receptors which regulates fusion pore expansion and vesicle content release. This finding expands the emerging picture that post-fusion Ca(2+) entry via vesicle-associated Ca(2+) channels plays a central role for regulated exocytosis.

18.
PLoS One ; 5(6): e10982, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20544027

ABSTRACT

BACKGROUND: Ca(2+) is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in the prefusion phase, the occurrence and significance of Ca(2+) signals in the postfusion phase have not been described before. METHODOLOGY/PRINCIPAL FINDINGS: We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies) in an exceptionally slow, Ca(2+)- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca(2+)](c) by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t(1/2) of decay = 3.2 s) rise of localized [Ca(2+)](c) originating at the site of lamellar body fusion. [Ca(2+)](c) increase followed with a delay of approximately 0.2-0.5 s (method-dependent) and in the majority of cases this signal propagated throughout the cell (at approximately 10 microm/s). Removal of Ca(2+) from, or addition of Ni(2+) to the extracellular solution, strongly inhibited these [Ca(2+)](c) transients, whereas Ca(2+) store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca(2+)](c). Both effects were reduced by the non-specific Ca(2+) channel blocker SKF96365. CONCLUSIONS/SIGNIFICANCE: Fusion-activated Ca(2+)entry (FACE) is a new mechanism that leads to [Ca(2+)](c) transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca(2+) entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.


Subject(s)
Alveolar Epithelial Cells/metabolism , Calcium/metabolism , Exocytosis , Membrane Fusion , Animals , Ion Transport , Male , Microscopy, Fluorescence , Rats , Rats, Sprague-Dawley
19.
Cell Physiol Biochem ; 25(1): 1-12, 2010.
Article in English | MEDLINE | ID: mdl-20054140

ABSTRACT

A major function of the pulmonary alveolar type II cell is the secretion of surfactant, a lipoprotein-like substance, via exocytosis of secretory vesicles termed lamellar bodies (LBs). The process of surfactant secretion is remarkable in several aspects, considering stimulus-delayed fusion activity, poor solubility of vesicle contents, long hemifusion lifetimes, slow fusion pore expansion and active, actin-driven content release. Cell stretch as well as P2Y(2) receptor stimulation by extracellular ATP are considered the most potent stimuli for LB exocytosis. For both stimuli, elevation of the cytoplasmic Ca(2+) concentration [Ca(2+)](c) is a key step. This review summarizes possible physiological roles and pathways of stretch- or ATP-induced surfactant secretion and discusses molecular mechanisms controlling the pre-, hemi- and postfusion phase, in comparison with neuroendocrine release mechanisms.


Subject(s)
Alveolar Epithelial Cells/cytology , Exocytosis , Receptors, Purinergic P2/metabolism , Secretory Vesicles/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Humans , Pulmonary Surfactants/metabolism
20.
Biochem J ; 424(1): 7-14, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19712048

ABSTRACT

Exocytosis proceeds through prefusion stages such as hemifusion, but hemifusion is still an elusive intermediate of unknown duration. Using darkfield and fluorescence microscopy in ATII (alveolar type II) cells containing large secretory vesicles (LBs; lamellar bodies), we show that exocytotic fusion events were accompanied by a mostly biphasic SLID (scattered light intensity decrease) originating from the vesicle border. Correlation with the diffusional behaviour of fluorescence markers for either content or membrane mixing revealed that the onset of the fast second phase of SLID corresponded to fusion pore formation, which was followed by vesicle swelling. In contrast, a slow first phase of SLID preceded pore formation considerably but could still be accompanied by diffusion of farnesylated DsRed, an inner plasma membrane leaflet marker, or Nile Red. We conclude that hemifusion is an exocytotic intermediate that may last for several seconds. SLID is a new, non-invasive approach by which a prefusion phase, including hemifusion, can be continuously recorded and distinguished from fusion pore formation and postfusion vesicle swelling.


Subject(s)
Exocytosis/physiology , Lung/cytology , Microscopy, Fluorescence/methods , Secretory Vesicles/metabolism , Adenoviridae/genetics , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Cells, Cultured , Genetic Vectors/genetics , Green Fluorescent Proteins , Lung/metabolism , Male , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Rats , Rats, Sprague-Dawley , Tetraspanin 30
SELECTION OF CITATIONS
SEARCH DETAIL
...