Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Cancer ; 23(1): 56, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38491381

ABSTRACT

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Subject(s)
Carbonic Anhydrases , Carcinoma, Renal Cell , Kidney Neoplasms , Receptors, Chimeric Antigen , Animals , Mice , Humans , Carbonic Anhydrase IX/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Receptors, Chimeric Antigen/genetics , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/therapeutic use , Antigens, Neoplasm , Antibodies , T-Lymphocytes/metabolism
2.
Commun Biol ; 5(1): 815, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35963938

ABSTRACT

The female reproductive tract (female-RT) must decipher the repertoire of molecular cues received from the male during copulation in order to activate and coordinate tract functionality necessary for high fertility. In Drosophila, this modulation is partially driven by spermathecal secretory cells (SSC). The SSC are a layer of cuboidal secretory glandular cells surrounding the spermatheca capsule where sperm is stored. It is unclear, however, how the SSC regulate the system's activity. Here we show that mating activates the secretory machinery of the SSC. The SSC release a heterogeneous population of extracellular vesicles (EVs) which is involved in initiating and managing the increase in egg-laying, and possibly sperm storage. Moreover, sperm and male accessory gland proteins are essential for such mating-mediated SSC activity. Thus, mating regulates secretory/endocytic pathways required for trafficking of vesicles to SSC-female-RT target sites, which modulate and coordinate reproductive tract activity to achieve high fertility.


Subject(s)
Drosophila Proteins , Extracellular Vesicles , Animals , Communication , Drosophila/metabolism , Drosophila Proteins/metabolism , Extracellular Vesicles/metabolism , Female , Fertility , Male , Semen
3.
Neuro Oncol ; 23(7): 1087-1099, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33508126

ABSTRACT

BACKGROUND: Genome-wide DNA methylation profiling has recently been developed into a tool that allows tumor classification in central nervous system tumors. Extracellular vesicles (EVs) are released by tumor cells and contain high molecular weight DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in glioblastoma cell-derived EVs reflects genome-wide tumor methylation and mutational profiles and allows noninvasive tumor subtype classification. METHODS: DNA was isolated from EVs secreted by glioblastoma cells as well as from matching cultured cells and tumors. EV-DNA was localized and quantified by direct stochastic optical reconstruction microscopy. Methylation and copy number profiling was performed using 850k arrays. Mutations were identified by targeted gene panel sequencing. Proteins were differentially quantified by mass spectrometric proteomics. RESULTS: Genome-wide methylation profiling of glioblastoma-derived EVs correctly identified the methylation class of the parental cells and original tumors, including the MGMT promoter methylation status. Tumor-specific mutations and copy number variations (CNV) were detected in EV-DNA with high accuracy. Different EV isolation techniques did not affect the methylation profiling and CNV results. DNA was present inside EVs and on the EV surface. Proteome analysis did not allow specific tumor identification or classification but identified tumor-associated proteins that could potentially be useful for enriching tumor-derived circulating EVs from biofluids. CONCLUSIONS: This study provides proof of principle that EV-DNA reflects the genome-wide methylation, CNV, and mutational status of glioblastoma cells and enables their molecular classification.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , DNA/metabolism , DNA Copy Number Variations , DNA Methylation , Extracellular Vesicles/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Methylation
4.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33187978

ABSTRACT

Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials.


Subject(s)
Antiviral Agents/pharmacology , Azetidines/pharmacology , COVID-19/mortality , Enzyme Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Liver/virology , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/pathogenicity , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , Interferon alpha-2/metabolism , Italy , Janus Kinases/metabolism , Liver/drug effects , Male , Middle Aged , Patient Safety , Platelet Activation , Proportional Hazards Models , RNA-Seq , Spain , Virus Internalization/drug effects , COVID-19 Drug Treatment
5.
Proc Natl Acad Sci U S A ; 116(51): 25958-25967, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31796600

ABSTRACT

Psychostimulant use is an ever-increasing socioeconomic burden, including a dramatic rise during pregnancy. Nevertheless, brain-wide effects of psychostimulant exposure are incompletely understood. Here, we performed Fos-CreERT2-based activity mapping, correlated for pregnant mouse dams and their fetuses with amphetamine, nicotine, and caffeine applied acutely during midgestation. While light-sheet microscopy-assisted intact tissue imaging revealed drug- and age-specific neuronal activation, the indusium griseum (IG) appeared indiscriminately affected. By using GAD67gfp/+ mice we subdivided the IG into a dorsolateral domain populated by γ-aminobutyric acidergic interneurons and a ventromedial segment containing glutamatergic neurons, many showing drug-induced activation and sequentially expressing Pou3f3/Brn1 and secretagogin (Scgn) during differentiation. We then combined Patch-seq and circuit mapping to show that the ventromedial IG is a quasi-continuum of glutamatergic neurons (IG-Vglut1+) reminiscent of dentate granule cells in both rodents and humans, whose dendrites emanate perpendicularly toward while their axons course parallel with the superior longitudinal fissure. IG-Vglut1+ neurons receive VGLUT1+ and VGLUT2+ excitatory afferents that topologically segregate along their somatodendritic axis. In turn, their efferents terminate in the olfactory bulb, thus being integral to a multisynaptic circuit that could feed information antiparallel to the olfactory-cortical pathway. In IG-Vglut1+ neurons, prenatal psychostimulant exposure delayed the onset of Scgn expression. Genetic ablation of Scgn was then found to sensitize adult mice toward methamphetamine-induced epilepsy. Overall, our study identifies brain-wide targets of the most common psychostimulants, among which Scgn+/Vglut1+ neurons of the IG link limbic and olfactory circuits.


Subject(s)
Brain Mapping , Brain/metabolism , Gene Expression Regulation , Limbic Lobe/metabolism , Animals , Axons/metabolism , Brain/diagnostic imaging , Dendrites/metabolism , Female , Glutamate Decarboxylase/genetics , Humans , Interneurons/metabolism , Limbic Lobe/anatomy & histology , Limbic Lobe/drug effects , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Olfactory Bulb/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Secretagogins/genetics , Secretagogins/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , gamma-Aminobutyric Acid/metabolism
6.
EMBO J ; 37(21)2018 11 02.
Article in English | MEDLINE | ID: mdl-30209240

ABSTRACT

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Subject(s)
Adrenergic Neurons/metabolism , Ciliary Neurotrophic Factor/metabolism , Hypothalamus/metabolism , Locus Coeruleus/metabolism , Stress, Physiological , Adrenergic Neurons/pathology , Animals , Ciliary Neurotrophic Factor/genetics , Hypothalamus/pathology , Locus Coeruleus/pathology , Mice , Mice, Knockout , Rats
7.
Mol Neurobiol ; 55(6): 4857-4869, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28735416

ABSTRACT

Although dopamine receptors D1 and D2 play key roles in hippocampal function, their synaptic localization within the hippocampus has not been fully elucidated. In order to understand precise functions of pre- or postsynaptic dopamine receptors (DRs), the development of protocols to differentiate pre- and postsynaptic DRs is essential. So far, most studies on determination and quantification of DRs did not discriminate between subsynaptic localization. Therefore, the aim of the study was to generate a robust workflow for the localization of DRs. This work provides the basis for future work on hippocampal DRs, in light that DRs may have different functions at pre- or postsynaptic sites. Synaptosomes from rat hippocampi isolated by a sucrose gradient protocol were prepared for super-resolution direct stochastic optical reconstruction microscopy (dSTORM) using Bassoon as a presynaptic zone and Homer1 as postsynaptic density marker. Direct labeling of primary validated antibodies against dopamine receptors D1 (D1R) and D2 (D2R) with Alexa Fluor 594 enabled unequivocal assignment of D1R and D2R to both, pre- and postsynaptic sites. D1R immunoreactivity clusters were observed within the presynaptic active zone as well as at perisynaptic sites at the edge of the presynaptic active zone. The results may be useful for the interpretation of previous studies and the design of future work on DRs in the hippocampus. Moreover, the reduction of the complexity of brain tissue by the use of synaptosomal preparations and dSTORM technology may represent a useful tool for synaptic localization of brain proteins.


Subject(s)
Hippocampus/metabolism , Microscopy, Electron/methods , Neurons/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Synaptosomes/metabolism , Animals , Male , Post-Synaptic Density/metabolism , Rats , Rats, Sprague-Dawley , Synapses/metabolism
8.
J Med Chem ; 60(22): 9330-9348, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29091428

ABSTRACT

Modafinil is a wake promoting compound with high potential for cognitive enhancement. It is targeting the dopamine transporter (DAT) with moderate selectivity, thereby leading to reuptake inhibition and increased dopamine levels in the synaptic cleft. A series of modafinil analogues have been reported so far, but more target-specific analogues remain to be discovered. It was the aim of this study to synthesize and characterize such analogues and, indeed, a series of compounds were showing higher activities on the DAT and a higher selectivity toward DAT versus serotonin and norepinephrine transporters than modafinil. This was achieved by substituting the amide moiety by five- and six-membered aromatic heterocycles. In vitro studies indicated binding to the cocaine pocket on DAT, although molecular dynamics revealed binding different from that of cocaine. Moreover, no release of dopamine was observed, ruling out amphetamine-like effects. The absence of neurotoxicity of a representative analogue may encourage further preclinical studies of the above-mentioned compounds.


Subject(s)
Benzhydryl Compounds/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Uptake Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , 1-Methyl-4-phenylpyridinium/metabolism , Animals , Benzhydryl Compounds/chemical synthesis , Binding Sites , Dopamine/metabolism , Dopamine Uptake Inhibitors/chemical synthesis , HEK293 Cells , Heterocyclic Compounds/chemical synthesis , Humans , Male , Modafinil , Molecular Docking Simulation , Molecular Dynamics Simulation , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Rats, Sprague-Dawley , Serotonin and Noradrenaline Reuptake Inhibitors/chemical synthesis , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Structure-Activity Relationship , Sulfoxides/chemical synthesis , Sulfoxides/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology
9.
Behav Brain Res ; 312: 127-37, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27288589

ABSTRACT

A series of compounds targeting the dopamine transporter (DAT) haS been shown to improve memory performance most probably by re-uptake inhibition. Although specific DAT inhibitors are available, there is limited information about specificity, mechanism and in particular the effect on dopamine receptors. It was therefore the aim of the study to test the DAT inhibitor 4-(diphenyl-methanesulfinylmethyl)-2-methyl-thiazole (code: CE-111), synthetized in our laboratory for the specificity to target DAT, for the effects upon spatial memory and for induced dopamine receptor modulation. Re-uptake inhibition was tested for DAT (IC50=3.2µM), serotonin transporter, SERT (IC50=272291µM) and noradrenaline transporter, NET (IC50=174µM). Spatial memory was studied in the radial arm maze (RAM) in male Sprague-Dawley rats that were intraperitoneally injected with CE-111 (1 or 10mg/kg body weight). Performance in the RAM was improved using 1 and 10mg/kg body weight of CE-111. Training and treatment effects on presynaptic, postsynaptic and extrasynaptic D1 and D2- receptors and dopamine receptor containing complexes as well as on activated DAT were observed. CE-111 was crossing the blood-brain barrier comparable to modafinil and was identified as effective to improve memory performance in the RAM. Dopamine re-uptake inhibition along with modulations in dopamine receptors are proposed as potential underlying mechanisms.


Subject(s)
Benzhydryl Compounds/administration & dosage , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/pharmacokinetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Maze Learning/drug effects , Receptors, Dopamine/metabolism , Thiazoles/administration & dosage , Thiazoles/pharmacology , Thiazoles/pharmacokinetics , Animals , Blood-Brain Barrier/metabolism , Dopamine/metabolism , Dopamine Uptake Inhibitors/chemical synthesis , HEK293 Cells , Heterocyclic Compounds/chemical synthesis , Hippocampus/cytology , Hippocampus/metabolism , Humans , Male , Pyramidal Cells/cytology , Pyramidal Cells/metabolism , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism
10.
Front Behav Neurosci ; 9: 276, 2015.
Article in English | MEDLINE | ID: mdl-26539091

ABSTRACT

GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM) task, a robust paradigm for evaluation of spatial learning. Trained or untrained (yoked control) C57BL/6J male mice (n = 10/group) were subjected to the MTM task and sacrificed 6 h following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a, and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA) and a proximity ligation assay (PLA) were also used to see if the two GABAB subunits are present in the receptor complex. Single bands were observed on Western blots, each representing GABAB1, GABAB1a, or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze.

11.
Behav Brain Res ; 289: 157-68, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25930220

ABSTRACT

Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies.


Subject(s)
Frontal Lobe/metabolism , Hippocampus/metabolism , Receptors, Neurotransmitter/analysis , Spatial Memory/physiology , Animals , Cytoskeletal Proteins/metabolism , Genes, Immediate-Early , Male , Maze Learning/physiology , Nerve Tissue Proteins/metabolism , Protein Subunits/analysis , Rats , Rats, Sprague-Dawley , Receptors, AMPA/analysis , Receptors, Dopamine D1/analysis , Receptors, N-Methyl-D-Aspartate/analysis , Receptors, Nicotinic/analysis
12.
Brain Struct Funct ; 220(4): 2209-21, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24807818

ABSTRACT

Reduced daily intake of magnesium (Mg(2+)) is suggested to contribute to depression. Indeed, preclinical studies show dietary magnesium restriction (MgR) elicits enhanced depression-like behaviour establishing a causal relationship. Amongst other mechanisms, Mg(2+) gates the activity of N-methyl-D-asparte (NMDA) receptors; however, it is not known whether reduced dietary Mg(2+) intake can indeed affect brain NMDA receptor complexes. Thus, the aim of the current study was to reveal whether MgR induces changes in brain NMDA receptor subunit composition that would indicate altered NMDA receptor regulation. The results revealed that enhanced depression-like behaviour elicited by MgR was associated with reduced amygdala-hypothalamic protein levels of GluN1-containing NMDA complexes. No change in GluN1 mRNA levels was observed indicating posttranslational changes were induced by dietary Mg(2+) restriction. To reveal possible protein interaction partners, GluN1 immunoprecipitation and proximity ligation assays were carried out revealing the expected GluN1 subunit association with GluN2A, GluN2B, but also novel interactions with GluA1, GluA2 in addition to known downstream signalling proteins. Chronic paroxetine treatment in MgR mice normalized enhanced depression-like behaviour, but did not alter protein levels of GluN1-containing NMDA receptors, indicating targets downstream of the NMDA receptor. Collectively, present data demonstrate that dietary MgR alters brain levels of GluN1-containing NMDA receptor complexes, containing GluN2A, GluN2B, AMPA receptors GluA1, GluA2 and several protein kinases. These data indicate that the modulation of dietary Mg(2+) intake may alter the function and signalling of this receptor complex indicating its involvement in the enhanced depression-like behaviour elicited by MgR.


Subject(s)
Amygdala/metabolism , Depression/complications , Hypothalamus/metabolism , Magnesium Deficiency , Magnesium/adverse effects , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Analysis of Variance , Animals , Depression/drug therapy , Diet/adverse effects , Disease Models, Animal , Gene Expression Regulation/physiology , Magnesium/metabolism , Magnesium Deficiency/complications , Magnesium Deficiency/etiology , Magnesium Deficiency/pathology , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Paroxetine/therapeutic use , Receptors, N-Methyl-D-Aspartate/genetics , Selective Serotonin Reuptake Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...