Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 2(11): 5421-5427, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-36132052

ABSTRACT

We present a structuring technique based on the initialization of chemical reactions by an array of nano-LEDs which is used in the near-field as well as in the far-field regime. In the near-field regime, we demonstrate first results with the nano-LED array for lithography using the photoresist DiazoNaphthoQuinone-(DNQ)-sulfonate for the fabrication of holes in the resist down to ∼75 nanometres in diameter. In contrast, the nano-LEDs can also be employed in the far-field regime to expose thin films of the monomer bisphenol A-glycidyl methacrylate (Bis-GMA) and to initialize polymerization locally. Photosensitive films were patterned and spherical cone-shaped three dimensional objects with diameters ranging from ∼480 nm up to 20 micrometres were obtained. The modification in the material as a result of the photochemical reaction induced i.e. by polymerization was confirmed by Raman spectroscopy. This structuring maskless technique has the potential to induce substantial changes in photosensitive molecules and to produce the desired structures from the tens of microns down to the nanometre scale.

2.
ACS Nano ; 12(1): 464-473, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29227684

ABSTRACT

Layered materials, like transition metal dichalcogenides, exhibit broad spectra with outstanding properties with huge application potential, whereas another group of related materials, layered transition metal trichalcogenides, remains unexplored. Here, we show the broad application potential of this interesting structural type of layered tantalum trisulfide prepared in a form of nanofibers. This material shows tailorable attractive electronic properties dependent on the tensile strain applied to it. Structure of this so-called orthorhombic phase of TaS3 grown in a form of long nanofibers has been solved and refined. Taking advantage of these capabilities, we demonstrate a highly specific impedimetric NO gas sensor based on TaS3 nanofibers as well as construction of photodetectors with excellent responsivity and field-effect transistors. Various flexible substrates were used for the construction of a NO gas sensor. Such a device exhibits a low limit of detection of 0.48 ppb, well under the allowed value set by environmental agencies for NOx (50 ppb). Moreover, this NO gas sensor also showed excellent selectivity in the presence of common interferences formed during fuel combustion. TaS3 nanofibers produced in large scale exhibited excellent broad application potential for various types of devices covering nanoelectronic, optoelectronic, and gas-sensing applications.

3.
Nanoscale ; 7(32): 13646-55, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26214601

ABSTRACT

The availability of well-defined modified graphene derivatives such as fluorographene, graphane, thiographene or hydroxygraphene is of pivotal importance for tuning the resulting material properties in numerous potential applications. A series of fluorinated graphene with various contents of fluorine was synthesized by a simple fluorination procedure in an autoclave with a nitrogen/fluorine atmosphere at different exposure times and temperatures. To investigate the composition, structure and properties all samples were characterized in detail by a number of analytical techniques such as SEM, XRD, EDS, AFM, STEM, combustible elemental analysis, STA, XPS, Raman spectroscopy, UV-VIS spectroscopy and cyclic voltammetry. The fully fluorinated graphene with the overall stoichiometry C1F1.05 had a bright white color indicating a significant change of band-gap. In comparison to other samples such a high concentration of fluorine led to the occurrence of exotic thermal behavior, strong luminescence in the visible spectral region and also the unique super-hydrophobic behavior observed on the material surface. The described tunable fluorination should pave the way to fluorographene based devices with tailored properties.

4.
ACS Nano ; 9(5): 5478-85, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25894311

ABSTRACT

For the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatography-mass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxide's thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.

5.
Nanotechnology ; 25(25): 255301, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24896155

ABSTRACT

The formation of nanowires (NWs) by reactive ion etching (RIE) of maskless GaN layers was investigated. The morphological, structural and optical characteristics of the NWs were studied and compared to those of the layer they evolve from. It is shown that the NWs are the result of a defect selective etching process. The evolution of density and length with etching time is discussed. Densely packed NWs with a length of more than 1 µm and a diameter of ∼60 nm were obtained by RIE of a ∼2.5 µm thick GaN layer. The NWs are predominantly free of threading dislocations and show an improvement of optical properties compared to their layer counterpart. The production of NWs via a top down process on non-masked group III-nitride layers is assessed to be very promising for photovoltaic applications.

6.
Opt Express ; 20(21): 23025-35, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188266

ABSTRACT

We present a practicable way to take advantage of the spectral information contained in a broadband terahertz pulse for the determination of birefringence and orientation of the optical axis in a glass fiber reinforced polymer with a single measurement. Our setup employs circularly polarized terahertz waves and a polarization-sensitive detector to measure both components of the electromagnetic field simultaneously. The anisotropic optical parameters are obtained from an analysis of the phase and frequency resolved components of the terahertz field. This method shows a high tolerance against the skew of the detection axes and is also independent of a reference measurement.


Subject(s)
Refractometry/instrumentation , Terahertz Imaging/instrumentation , Birefringence , Equipment Design , Equipment Failure Analysis
7.
Opt Express ; 18(6): 6097-107, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20389631

ABSTRACT

We report on a first experimental study of the molecular properties of nematic liquid crystals in the terahertz range. In the beginning, we extract the frequency and temperature dependent refractive index and absorption coefficient of the cyanobiphenyls 5CB, 6CB and 7CB from terahertz time domain spectroscopy measurements and investigate the impact of the alkyl chain length on the macroscopic liquid crystal characteristics, focusing especially on the pronounced odd and even effect. Next, we deduce the principle polarizabilities and the order parameter S by applying Vuks' approximation and Haller's approach. On this basis, we calculate the main polarizabilities along the longitudinal and transverse axis and link the observed terahertz properties to the molecular structure of the liquid crystals.


Subject(s)
Liquid Crystals/chemistry , Models, Chemical , Computer Simulation , Light , Refractometry , Scattering, Radiation , Terahertz Radiation
8.
Appl Opt ; 48(11): 2037-44, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19363540

ABSTRACT

A terahertz time-domain spectrometer is employed to study different birefringent samples. We develop a method based on the temporal waveform and the impulse response of a sample to map the anisotropy of their inner structure. To validate our algorithm, we study the polarization-affecting structure of various classes of materials such as crystals, plastics, and natural products. Among all samples we observe the largest birefringence for a rutile crystal with Deltan=3.3 at 1 THz.


Subject(s)
Materials Testing/instrumentation , Materials Testing/methods , Terahertz Spectroscopy , Algorithms , Anisotropy , Birefringence , Crystallography/instrumentation , Models, Theoretical
9.
Appl Opt ; 47(16): 3023-6, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18516122

ABSTRACT

We present a low cost terahertz (THz) spectrometer with coherent detection based on two simple and robust dipole antennas driven by two laser diodes. The spectrometer covers frequencies up to 1 THz, with a peak signal-to-noise ratio exceeding 40 dB for a lock-in integration time of 30 ms. We demonstrate that the thickness profile of a sample can be reconstructed from an acquired THz image.


Subject(s)
Optics and Photonics , Spectrophotometry/methods , Electrodes , Electromagnetic Phenomena , Equipment Design , Lasers , Polyethylene/chemistry , Quality Control , Research Design , Temperature , Time Factors
10.
Appl Opt ; 42(9): 1726-31, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12665104

ABSTRACT

We present a novel, free-standing low-temperature GaAs (LT-GaAs) photoconductive switch and demonstrate its femtosecond performance. A 1-microm-thick layer of a single-crystal LT-GaAs was patterned into 5-10-microm-wide and 15-30-microm-long bars, separated from their GaAs substrate and, subsequently, placed across gold coplanar transmission lines deposited on a Si substrate, forming a photoconductive switch. The switch was excited with 110-fs-wide optical pulses, and its photoresponse was measured with an electro-optic sampling system. Using 810-nm optical radiation, we recorded an electrical transient as short as 360 fs (1.25 THz, 3-dB bandwidth) and established that the photo-carrier lifetime in our LT-GaAs was 150 fs. Our free-standing devices exhibited quantum efficiency of the order of approximately 7%, and their photoresponse amplitude was a linear function of the applied voltage bias, as well as a linear function of the excitation power, below a well-defined saturation threshold.

SELECTION OF CITATIONS
SEARCH DETAIL
...