Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 16(10): 1055, 2021 10.
Article in English | MEDLINE | ID: mdl-34625718
2.
ACS Nano ; 15(8): 12509-12534, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34370440

ABSTRACT

Layered materials (LMs), such as graphite, hexagonal boron nitride, and transition-metal dichalcogenides, are at the center of an ever-increasing research effort, due to their scientific and technological relevance. Raman and infrared spectroscopies are accurate, non-destructive approaches to determine a wide range of properties, including the number of layers, N, and the strength of the interlayer interactions. We present a general approach to predict the complete spectroscopic fan diagrams, i.e., the relations between frequencies and N for the optically active shear and layer-breathing modes of any multilayer comprising N ≥ 2 identical layers. In order to achieve this, we combine a description of the normal modes in terms of a one-dimensional mechanical model, with symmetry arguments that describe the evolution of the point group as a function of N. Group theory is then used to identify which modes are Raman- and/or infrared-active, and to provide diagrams of the optically active modes for any stack composed of identical layers. We implement the method and algorithms in an open-source tool to assist researchers in the prediction and interpretation of such diagrams. Our work will underpin future efforts on Raman and infrared characterization of known, and yet not investigated, LMs.

3.
Sensors (Basel) ; 19(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766764

ABSTRACT

The study of the rolling tyre is a problem framed in the general context of nonlinear elasticity. The dynamics of the related phenomena is still an open topic, even though few examples and models of tyres can be found in the technical literature. The interest in the dissipation effects associated with the rolling motion is justified by their importance in fuel-saving and in the context of an eco-friendly design. However, a general lack of knowledge characterizes the phenomenon, since not even direct experience on the rolling tyre can reveal the insights of the correlated different dissipation effects, as the friction between the rubber and the road, the contact kinematics and dynamics, the tyre hysteretic behaviour and the grip. A new technology, based on fibre Bragg grating strain sensors and conceived within the OPTYRE project, is illustrated for the specific investigation of the tyre dissipation related phenomena. The remarkable power of this wireless optical system stands in the chance of directly accessing the behaviour of the inner tyre in terms of stresses when a real-condition-rolling is experimentally observed. The ad hoc developed tyre model has allowed the identification of the instant grip conditions, of the area of the contact patch and allows the estimation of the instant dissipated power, which is the focus of this paper.

4.
5.
Nat Nanotechnol ; 14(10): 919-921, 2019 10.
Article in English | MEDLINE | ID: mdl-31582828
6.
ACS Nano ; 11(11): 10955-10963, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29072904

ABSTRACT

We report vertically illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550 nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the PDs are integrated with an optical cavity, resulting in multiple reflections at resonance, and enhanced absorption in graphene. We get a wavelength-dependent photoresponse with external (internal) responsivity ∼20 mA/W (0.25A/W). The spectral selectivity may be further tuned by varying the cavity resonant wavelength. Our devices pave the way for developing high responsivity hybrid graphene-Si free-space illuminated PDs for optical communications, coherence optical tomography, and light-radars.

7.
ACS Nano ; 11(3): 2742-2755, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28102670

ABSTRACT

We report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 108 s-1] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below ∼2Ω/□. This is a simple and scalable production route for conductive inks for large-area printing in flexible electronics.

8.
ACS Nano ; 10(9): 8252-62, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27537529

ABSTRACT

We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimeter-scale chemical vapor deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.5A/W and the internal 570A/W at 642 nm. This is at least 2 orders of magnitude higher than bulk-semiconductor flexible membranes. The photoconductive gain is up to 4 × 10(5). The photocurrent is in the 0.1-100 µA range. The devices are semitransparent, with 8% absorptance at 642 nm, and are stable upon bending to a curvature of 1.4 cm. These capabilities and the low-voltage operation (<1 V) make them attractive for wearable applications.

9.
Nano Lett ; 16(5): 3005-13, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27053042

ABSTRACT

We report an on-chip integrated metal graphene-silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 µm and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics.

10.
Nano Lett ; 16(6): 3442-7, 2016 06 08.
Article in English | MEDLINE | ID: mdl-26907096

ABSTRACT

Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.

11.
ACS Nano ; 9(7): 7440-9, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26062640

ABSTRACT

Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures.

12.
Nano Lett ; 13(11): 5033-8, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24059599

ABSTRACT

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.

13.
ACS Nano ; 7(10): 8857-69, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24066614

ABSTRACT

We use a resistive-pulse technique to analyze molecular hybrids of single-wall carbon nanotubes (SWNTs) wrapped in either single-stranded DNA or protein. Electric fields confined in a glass capillary nanopore allow us to probe the physical size and surface properties of molecular hybrids at the single-molecule level. We find that the translocation duration of a macromolecular hybrid is determined by its hydrodynamic size and solution mobility. The event current reveals the effects of ion exclusion by the rod-shaped hybrids and possible effects due to temporary polarization of the SWNT core. Our results pave the way to direct sensing of small DNA or protein molecules in a large unmodified solid-state nanopore by using nanofilaments as carriers.


Subject(s)
DNA, Single-Stranded/chemistry , Nanotubes/chemistry , Proteins/chemistry , Microscopy, Atomic Force , Spectrum Analysis, Raman
14.
Opt Express ; 21(7): 7943-50, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571886

ABSTRACT

We fabricate a saturable absorber mirror by coating a graphene- film on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ~1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass.


Subject(s)
Graphite/chemistry , Lasers , Lenses , Membranes, Artificial , Surface Plasmon Resonance/instrumentation , Energy Transfer , Equipment Design , Equipment Failure Analysis
15.
ACS Nano ; 6(6): 5395-403, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22642322

ABSTRACT

We fabricate nanosized superconducting YBa(2)Cu(3)O(7-δ) (Y-123) and nonsuperconducting Y(2)BaCuO(5) (Y-211) powders using carbon nanotubes as template. The mean particle size of Y-123 and Y-211 is 12 and 30 nm, respectively. The superconducting transition temperature of the Y-123 nanopowder is 90.9 K, similar to that of commercial, micrometer-scale powders fabricated by conventional processing. The elimination of carbon and the formation of a high purity superconducting phase both on the micro- and macroscale is confirmed by Raman spectroscopy and X-ray diffraction. We also demonstrate improvement in the superconducting properties of YBCO single grain bulk samples fabricated using the nanosize Y-211 powder, both in terms of trapped field and critical current density. The former reaches 553 mT at 77 K, with a ∼20% improvement compared to samples fabricated from commercial powders. Thus, our processing method is an effective source of pinning centers in single grain superconductors.


Subject(s)
Ceramics/chemistry , Molecular Imprinting/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Electric Conductivity , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Powders , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...