Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328354

ABSTRACT

Obesity and type 2 diabetes mellitus (T2DM) are highly prevalent disorders, associated with insulin resistance and chronic inflammation. The brain is key for energy homeostasis and contains many insulin receptors. Microglia, the resident brain immune cells, are known to express insulin receptors (InsR) and to be activated by a hypercaloric environment. The aim of this study was to evaluate whether microglial insulin signaling is involved in the control of systemic energy homeostasis and whether this function is sex-dependent. We generated a microglia-specific knockout of the InsR gene in male and female mice and exposed them to control or obesogenic dietary conditions. Following 10 weeks of diet exposure, we evaluated insulin tolerance, energy metabolism, microglial morphology and phagocytic function, and neuronal populations. Lack of microglial InsR resulted in increased plasma insulin levels and insulin resistance in obese female mice. In the brain, loss of microglial InsR led to a decrease in microglial primary projections in both male and female mice, irrespective of the diet. In addition, in obese male mice lacking microglial InsR the number of proopiomelanocortin neurons was decreased, compared to control diet, while no differences were observed in female mice. Our results demonstrate a sex-dependent effect of microglial InsR-signaling in physiology and obesity, and stress the importance of a heterogeneous approach in the study of diseases such as obesity and T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Insulin/metabolism , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Microglia/metabolism , Obesity/genetics , Obesity/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
2.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808700

ABSTRACT

The prevalence of obesity has increased rapidly in recent years and has put a huge burden on healthcare worldwide. Obesity is associated with an increased risk for many comorbidities, such as cardiovascular diseases, type 2 diabetes and hypertension. The hypothalamus is a key brain region involved in the regulation of food intake and energy expenditure. Research on experimental animals has shown neuronal loss, as well as microglial activation in the hypothalamus, due to dietary-induced obesity. Microglia, the resident immune cells in the brain, are responsible for maintaining the brain homeostasis and, thus, providing an optimal environment for neuronal function. Interestingly, in obesity, microglial cells not only get activated in the hypothalamus but in other brain regions as well. Obesity is also highly associated with changes in hippocampal function, which could ultimately result in cognitive decline and dementia. Moreover, changes have also been reported in the striatum and cortex. Microglial heterogeneity is still poorly understood, not only in the context of brain region but, also, age and sex. This review will provide an overview of the currently available data on the phenotypic differences of microglial innate immunity in obesity, dependent on brain region, sex and age.


Subject(s)
Biological Variation, Population , Brain Mapping , Brain/diagnostic imaging , Brain/metabolism , Microglia/metabolism , Obesity/diagnostic imaging , Age Factors , Animals , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Hypothalamus/diagnostic imaging , Hypothalamus/metabolism , Sex Factors
3.
Theranostics ; 10(21): 9512-9527, 2020.
Article in English | MEDLINE | ID: mdl-32863942

ABSTRACT

Rationale: Hypertension is a major risk factor for cerebral small vessel disease, the most prevalent cause of vascular cognitive impairment. As we have shown, hypertension induced by a prolonged Angiotensin II infusion is associated with increased permeability of the blood-brain barrier (BBB), chronic activation of microglia and myelin loss. In this study we therefore aim to determine the contribution of microglia to hypertension-induced cognitive impairment in an experimental hypertension model by a pharmacological depletion approach. Methods: For this study, adult Cx3Cr1 gfp/wtxThy1 yfp/0 reporter mice were infused for 12 weeks with Angiotensin II or saline and subgroups were treated with PLX5622, a highly selective CSF1R tyrosine kinase inhibitor. Systolic blood pressure (SBP) was measured via tail-cuff. Short- and long-term spatial memory was assessed during an Object Location task and a Morris Water Maze task (MWM). Microglia depletion efficacy was assessed by flow cytometry and immunohistochemistry. BBB leakages, microglia phenotype and myelin integrity were assessed by immunohistochemistry. Results: SBP, heart weight and carotid pulsatility were increased by Ang II and were not affected by PLX5622. Short-term memory was significantly impaired in Ang II hypertensive mice, and partly prevented in Ang II mice treated with PLX5622. Histological and flow cytometry analysis revealed almost complete ablation of microglia and a 60% depletion of brain resident perivascular macrophages upon CSF1R inhibition. Number and size of BBB leakages were increased in Ang II hypertensive mice, but not altered by PLX5622 treatment. Microglia acquired a pro-inflammatory phenotype at the site of BBB leakages in both Saline and Ang II mice and were successfully depleted by PLX5622. There was however no significant change in myelin integrity at the site of leakages. Conclusion: Our results show that depletion of microglia and PVMs, by CSF1R inhibition prevents short-term memory impairment in Ang II induced hypertensive mice. We suggest this beneficial effect is mediated by the major decrease of pro-inflammatory microglia within BBB leakages. This novel finding supports the critical role of brain immune cells in the pathogenesis of hypertension-related cognitive impairment. An adequate modulation of microglia /PVM density and phenotype may constitute a relevant approach to prevent and/or limit the progression of vascular cognitive impairment.


Subject(s)
Angiotensin II/pharmacology , Cognitive Dysfunction/prevention & control , Enzyme Inhibitors/pharmacology , Hypertension/chemically induced , Macrophages/drug effects , Microglia/drug effects , Animals , Blood Pressure/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hypertension/metabolism , Macrophages/metabolism , Male , Mice , Microglia/metabolism , Organic Chemicals/pharmacology
4.
Article in English | MEDLINE | ID: mdl-31316470

ABSTRACT

Background: Disturbance of immunometabolic signaling is a key process involved in the progression of obesity. Microglia-the resident immune cells in the brain, initiate local immune responses. It is known that hypercaloric diets lead to microglial activation. Previously, we observed that hypothalamic microglial cells from mice fed high-fat diet (HFD) lose their day/night rhythm and are constantly activated. However, little is known about daily rhythmicity in microglial circadian, immune and metabolic functions, either in lean or obese conditions. Therefore, we hypothesized that HFD disturbs microglial immunometabolism in a day/night-dependent manner. Methods: Obesity was induced in Wistar rats by feeding them HFD ad libitum for the duration of 8 weeks. Microglia were isolated from HFD- and chow-fed control animals at six time points during 24 h [every 4 h starting 2 h after lights on, i.e., Zeitgeber Time 2 (ZT2)]. Gene expression was evaluated using quantitative RT-PCR. JTK_Cycle software was used to estimate daily rhythmicity. Statistical analysis was performed with two-way ANOVA test. Results: Consumption of the obesogenic diet resulted in a 40 g significantly higher body weight gain in week 8, compared to chow diet (p < 0.0001), associated with increased adiposity. We observed significant rhythmicity of circadian clock genes in microglia under chow conditions, which was partially lost in diet-induced obesity (DIO). Microglial immune gene expression also showed time-of-day differences, which were disrupted in HFD-fed animals. Microglia responded to the obesogenic conditions by a shift of substrate utilization with decreased glutamate and glucose metabolism in the active period of the animals, and an overall increase of lipid metabolism, as indicated by gene expression evaluation. Additionally, data on mitochondria bioenergetics and dynamics suggested an increased energy production in microglia during the inactive period on HFD. Finally, evaluation of monocyte functional gene expression showed small or absent effect of HFD on peripheral myeloid cells, suggesting a cell-specific microglial inflammatory response in DIO. Conclusions: An obesogenic diet affects microglial immunometabolism in a time-of-day dependent manner. Given the central role of the brain in energy metabolism, a better knowledge of daily rhythms in microglial immunometabolism could lead to a better understanding of the pathogenesis of obesity.

SELECTION OF CITATIONS
SEARCH DETAIL