Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 12(3): 1440-1458, 2022.
Article in English | MEDLINE | ID: mdl-35154499

ABSTRACT

Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.


Subject(s)
Atherosclerosis , Hyperlipidemias , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Down-Regulation , Endothelial Cells/metabolism , Hyperlipidemias/metabolism , Lipids , Lipoproteins, LDL/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
2.
Front Physiol ; 11: 476, 2020.
Article in English | MEDLINE | ID: mdl-32523544

ABSTRACT

Despite significant efforts made to treat cardiovascular disease (CVD), more than half of cardiovascular events still occur in asymptomatic subjects devoid of traditional risk factors. These observations underscore the need for the identification of new biomarkers for the prevention of atherosclerosis, the main underlying cause of CVD. Extracellular vesicles (EVs) and lymphatic vessel function are emerging targets in this context. EVs are small vesicles released by cells upon activation or death that are present in several biological tissues and fluids, including blood and lymph. They interact with surrounding cells to transfer their cargo, and the complexity of their biological content makes these EVs potential key players in several chronic inflammatory settings. Many studies focused on the interaction of EVs with the most well-known players of atherosclerosis such as the vascular endothelium, smooth muscle cells and monocytes. However, the fate of EVs within the lymphatic network, a crucial route in the mobilization of cholesterol out the artery wall, is not known. In this review, we aim to bring forward evidence that EVs could be at the interplay between lymphatic function and atherosclerosis by summarizing the recent findings on the characterization of EVs in this setting.

3.
Arterioscler Thromb Vasc Biol ; 40(4): 929-942, 2020 04.
Article in English | MEDLINE | ID: mdl-32102567

ABSTRACT

OBJECTIVE: The lymphatic system is a circulatory system that unidirectionally drains the interstitial tissue fluid back to blood circulation. Although lymph is utilized by leukocytes for immune surveillance, it remains inaccessible to platelets and erythrocytes. Activated cells release submicron extracellular vesicles (EV) that transport molecules from the donor cell. In rheumatoid arthritis, EV accumulate in the joint where they can interact with numerous cellular lineages. However, whether EV can exit the inflamed tissue to recirculate is unknown. Here, we investigated whether vascular leakage that occurs during inflammation could favor EV access to the lymphatic system. Approach and Results: Using an in vivo model of autoimmune inflammatory arthritis, we show that there is an influx of platelet EV, but not EV from erythrocytes or leukocytes, in joint-draining lymph. In contrast to blood platelet EV, lymph platelet EV lacked mitochondrial organelles and failed to promote coagulation. Platelet EV influx in lymph was consistent with joint vascular leakage and implicated the fibrinogen receptor α2bß3 and platelet-derived serotonin. CONCLUSIONS: These findings show that platelets can disseminate their EV in fluid that is inaccessible to platelets and beyond the joint in this disease.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Blood Platelets/physiology , Extracellular Vesicles/physiology , Lymph/physiology , Animals , Blood Platelets/metabolism , Capillary Permeability , Disease Models, Animal , Mice, Inbred C57BL , Serotonin/metabolism
4.
Atherosclerosis ; 283: 106-119, 2019 04.
Article in English | MEDLINE | ID: mdl-30851674

ABSTRACT

BACKGROUND AND AIMS: Our previous data showed that lymphatic function impairment occurs before the onset of atherosclerosis in mice and is precociously associated with a defect in the propelling capacity of the collecting lymphatic vessels. Concomitantly, we found that lymphatic transport can be restored in mice by systemic injections of a mutant form of VEGF-C (VEGF-C 152s), a growth factor known to increase mesenteric collecting lymphatic vessel pumping through a VEGFR-3-dependent mechanism in rats. In the present study, we aimed to determine whether and how early modulation of collecting lymphatic vessel function could restrain atherosclerosis onset and limit its progression. METHODS: Before the administration of a pro-atherosclerotic regimen, Ldlr-/- mice at 6 weeks of age were injected intraperitoneally with VEGF-C 152s or PBS every other day for 4 weeks, fed on high fat diet (HFD) for an additional 8 weeks to promote plaque progression, and switched back on chow diet for 4 more weeks to stabilize the lesion. RESULTS: Early treatment with VEGF-C first improved lymphatic molecular transport in 6-week-old Ldlr-/- mice and subsequently limited plaque formation and macrophage accumulation, while improving inflammatory cell migration through the lymphatics in HFD-fed mice. The contraction frequency of the collecting lymphatic vessels was significantly increased following treatment throughout the whole atherosclerotic process and resulted in enhanced plaque stabilization. This early and maintained rescue of the lymphatic dysfunction was associated with an upregulation of VEGFR3 and FOXC2 expression on lymphatic endothelial cells. CONCLUSIONS: These results suggest that early treatments that specifically target the lymphatic contraction capacity prior to lesion formation might be a novel therapeutic approach for the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Endothelial Cells/metabolism , Lymphatic Diseases/therapy , Lymphatic Vessels/physiopathology , Vascular Endothelial Growth Factor C/pharmacology , Animals , Atherosclerosis/blood , Atherosclerosis/pathology , Cells, Cultured , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Lymphatic Diseases/etiology , Lymphatic Diseases/pathology , Lymphatic Vessels/drug effects , Lymphatic Vessels/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Vascular Resistance
5.
J Immunol ; 201(8): 2462-2471, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30209193

ABSTRACT

CLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated. We characterized the effects of CLCF1 on myeloid cells with a focus on monocyte-macrophage and macrophage-foam cell differentiations. CLCF1 injections in mice resulted in a significant increase in CD11b+ circulating cells, including proinflammatory monocytes. Furthermore, CLCF1 activated STAT3 phosphorylation in bone marrow CD11b+ cells and in bone marrow-derived macrophages (BMDM). BMDM stimulated with CLCF1 produced a large array of proinflammatory factors comprising IL-6, IL-9, G-CSF, GM-CSF, IL-1ß, IL-12, CCL5, and CX3CL1. The pattern of cytokines and chemokines released by CLCF1-treated BMDM led us to investigate the role of CLCF1 in foam cell formation. When pretreated with CLCF1, BMDM presented a marked SR-A1 upregulation, an increase in acetylated-low-density lipoprotein uptake, and an elevated triglyceride accumulation. CLCF1-induced SR-A1 upregulation, triglyceride accumulation, and acetylated-low-density lipoprotein uptake could be prevented using ruxolitinib, a JAK inhibitor, indicating that the effects of the cytokine on myeloid cells result from activation of the canonical JAK/STAT signaling pathway. Our data reveal novel biological roles for CLCF1 in the control of myeloid function and identify this cytokine as a strong inducer of macrophage-foam cell transition, thus bringing forward a new potential therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Cell Differentiation , Cytokines/metabolism , Foam Cells/physiology , Macrophages/physiology , Animals , Atherosclerosis/pathology , Cells, Cultured , Female , Humans , Inflammation Mediators/metabolism , Janus Kinases/metabolism , Mice , Mice, Inbred C57BL , Myelopoiesis , STAT Transcription Factors , Scavenger Receptors, Class A/metabolism , Signal Transduction
6.
J Am Heart Assoc ; 6(9)2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28939717

ABSTRACT

BACKGROUND: Subcutaneously injected lipid-free apoA-I (apolipoprotein A-I) reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without increasing high-density lipoprotein-cholesterol concentrations. Lymphatic vessels are now recognized as prerequisite players in the modulation of cholesterol removal from the artery wall in experimental conditions of plaque regression, and particular attention has been brought to the role of the collecting lymphatic vessels in early atherosclerosis-related lymphatic dysfunction. In the present study, we address whether and how preservation of collecting lymphatic function contributes to the protective effect of apoA-I. METHODS AND RESULTS: Atherosclerotic Ldlr-/- mice treated with low-dose lipid-free apoA-I showed enhanced lymphatic transport and abrogated collecting lymphatic vessel permeability in atherosclerotic Ldlr-/- mice when compared with albumin-control mice. Treatment of human lymphatic endothelial cells with apoA-I increased the adhesion of human platelets on lymphatic endothelial cells, in a bridge-like manner, a mechanism that could strengthen endothelial cell-cell junctions and limit atherosclerosis-associated collecting lymphatic vessel dysfunction. Experiments performed with blood platelets isolated from apoA-I-treated Ldlr-/- mice revealed that apoA-I decreased ex vivo platelet aggregation. This suggests that in vivo apoA-I treatment limits platelet thrombotic potential in blood while maintaining the platelet activity needed to sustain adequate lymphatic function. CONCLUSIONS: Altogether, we bring forward a new pleiotropic role for apoA-I in lymphatic function and unveil new potential therapeutic targets for the prevention and treatment of atherosclerosis.


Subject(s)
Aortic Diseases/prevention & control , Apolipoprotein A-I/administration & dosage , Atherosclerosis/prevention & control , Lymphatic Vessels/drug effects , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoprotein A-I/pharmacokinetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Genetic Predisposition to Disease , Humans , Injections, Subcutaneous , Lipid Metabolism/drug effects , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Mice, Inbred C57BL , Mice, Knockout , Permeability , Phenotype , Plaque, Atherosclerotic , Platelet Adhesiveness/drug effects , Platelet Aggregation/drug effects , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-3/metabolism
7.
J Extracell Vesicles ; 5: 31427, 2016.
Article in English | MEDLINE | ID: mdl-27664155

ABSTRACT

The lymphatic system works in close collaboration with the cardiovascular system to preserve fluid balance throughout the body and is essential for the trafficking of antigen-presenting cells and lymphocytes to lymphoid organs. Recent findings have associated lymphatic dysfunction with the pathogenesis of cardiovascular-related diseases such as atherosclerosis, inflammation and obesity. Whether lymphatic dysfunction is a cause or a consequence of these diseases, as well as how, is under intensive investigation. Extracellular vesicles (EVs) are submicron vesicles released by diverse cell types upon activation or apoptosis and are considered important biomarkers for several inflammatory diseases. Thus, it is critical to characterize the presence of EVs in various biological tissues and fluids to delineate their origins and, subsequently, their functions. In the past few years, new techniques allowing the quantitative and qualitative analysis of EVs have emerged, thus facilitating the onset of studies bridging these vesicles to the lymphatic system. Using several state-of-the-art approaches, this article reports the presence of diverse EVs inclusively derived from red blood cells and platelets in lymph of healthy animals. Our results suggest that lymph from atherosclerotic mice displays a higher concentration of EVs, bringing forward the concept that EVs contained in lymph could either be a biomarker for lymphatic dysfunction or, conversely, for inflammatory disease progression.

8.
Sci Rep ; 6: 27862, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279328

ABSTRACT

Atherosclerosis is driven by the accumulation of immune cells and cholesterol in the arterial wall. Although recent studies have shown that lymphatic vessels play an important role in macrophage reverse cholesterol transport, the specific underlying mechanisms of this physiological feature remain unknown. In the current report, we sought to better characterize the lymphatic dysfunction that is associated with atherosclerosis by studying the physiological and temporal origins of this impairment. First, we assessed that athero-protected Pcsk9(-/-) mice exhibited improved collecting lymphatic vessel function throughout age when compared to WT mice for up to six months, while displaying enhanced expression of LDLR on lymphatic endothelial cells. Lymphatic dysfunction was present before the atherosclerotic lesion formation in a mouse model that is predisposed to develop atherosclerosis (Ldlr(-/-); hApoB100(+/+)). This dysfunction was presumably associated with a defect in the collecting lymphatic vessels in a non-specific cholesterol- but LDLR-dependent manner. Treatment with a selective VEGFR-3 agonist rescued this impairment observed early in the onset of this arterial disease. We suggest that LDLR modulation is associated with early atherosclerosis-related lymphatic dysfunction, and bring forth a pleiotropic role for PCSK9 in lymphatic function. Our study unveils new potential therapeutic targets for the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Disease Models, Animal , Endothelial Cells/pathology , Female , Lymphatic Vessels/pathology , Male , Mice , Mice, Knockout , Proprotein Convertase 9/genetics , Receptors, LDL/genetics
9.
Future Sci OA ; 1(4): FSO61, 2015 Nov.
Article in English | MEDLINE | ID: mdl-28031913

ABSTRACT

The lymphatic system is a key component of tissue fluid homeostasis. In contrast to the closed and high-pressure blood vascular system, the lymphatic vascular system transports lymph in an open and low-pressure network. A prerequisite player in the transport of immune cells and cholesterol metabolism, it has been understudied until recently. Whereas defects in lymph circulation are mostly associated with pathologies such as congenital or acquired lymphedema, emerging significant developments are unraveling the role of lymphatic vessels in other pathological settings. In the last decade, discoveries of underlying genes responsible for developmental and postnatal lymphatic growth, combined with state-of-the-art lymphatic function imaging and quantification techniques, have matched the growing interest in understanding the role of the lymphatic system in atherosclerosis. With a historical perspective, this review highlights the current knowledge regarding interaction between the lymphatic vascular tree and atherosclerosis, with an emphasis on the physiological mechanisms of this multifaceted system throughout disease onset and progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...