Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628219

ABSTRACT

We ground the asymmetry of causal relations in the internal physical states of a special kind of open and irreversible physical system, a causal agent. A causal agent is an autonomous physical system, maintained in a steady state, far from thermal equilibrium, with special subsystems: sensors, actuators, and learning machines. Using feedback, the learning machine, driven purely by thermodynamic constraints, changes its internal states to learn probabilistic functional relations inherent in correlations between sensor and actuator records. We argue that these functional relations just are causal relations learned by the agent, and so such causal relations are simply relations between the internal physical states of a causal agent. We show that learning is driven by a thermodynamic principle: the error rate is minimised when the dissipated power is minimised. While the internal states of a causal agent are necessarily stochastic, the learned causal relations are shared by all machines with the same hardware embedded in the same environment. We argue that this dependence of causal relations on such 'hardware' is a novel demonstration of causal perspectivalism.

2.
Phys Rev Lett ; 127(19): 190403, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797162

ABSTRACT

Closed loop quantum control uses measurement to control the dynamics of a quantum system to achieve either a desired target state or target dynamics. In the case when the quantum Hamiltonian is quadratic in x and p, there are known optimal control techniques to drive the dynamics toward particular states, e.g., the ground state. However, for nonlinear Hamiltonian such control techniques often fail. We apply deep reinforcement learning (DRL), where an artificial neural agent explores and learns to control the quantum evolution of a highly nonlinear system (double well), driving the system toward the ground state with high fidelity. We consider a DRL strategy which is particularly motivated by experiment where the quantum system is continuously but weakly measured. This measurement is then fed back to the neural agent and used for training. We show that the DRL can effectively learn counterintuitive strategies to cool the system to a nearly pure "cat" state, which has a high overlap fidelity with the true ground state.

3.
Opt Express ; 23(12): 16008-23, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193575

ABSTRACT

Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. In parallel, integrated optical systems are being pursued as a platform for photonic quantum information processing using linear optics and Fock states. Here we propose a novel integrated Fock state optical sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and find that this system, which only relies on photon coincidence detection and does not need any spectral resolution, can estimate forces as small as 10(-7) Newtons and can measure one part per million change in refractive index using a very low input power of 10(-10)W. Thus linear optical quantum photonic architectures can achieve comparable sensor performance to semiclassical devices.

4.
Science ; 339(6121): 770-1, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23413346
5.
Science ; 330(6008): 1188-9, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21109659
6.
Phys Rev Lett ; 103(15): 150503, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905614

ABSTRACT

The very small size of optical nonlinearities places strict restrictions on the types of novel physics one can explore. This work describes how a single artificial multilevel Cooper pair box molecule, interacting with a superconducting microwave coplanar resonator, when suitably driven, can generate extremely large optical nonlinearities at microwave frequencies, with no associated absorption. We describe how the giant self-Kerr effect can be detected by measuring the second-order correlation function and quadrature squeezing spectrum.

7.
Philos Trans A Math Phys Eng Sci ; 361(1809): 1655-74, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12952679

ABSTRACT

We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.


Subject(s)
Electronics/trends , Miniaturization/methods , Quantum Theory , Technology Assessment, Biomedical , Technology/trends , Computing Methodologies , Electronics/instrumentation , Electronics/methods , Information Storage and Retrieval/methods , Information Storage and Retrieval/trends , Nanotechnology/instrumentation , Nanotechnology/methods , Nanotechnology/trends , Optics and Photonics/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...