Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 817, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280859

ABSTRACT

Animals have evolved mechanisms to travel safely and efficiently within different habitats. On a journey in dense terrains animals avoid collisions and cross narrow passages while controlling an overall course. Multiple hypotheses target how animals solve challenges faced during such travel. Here we show that a single mechanism enables safe and efficient travel. We developed a robot inspired by insects. It has remarkable capabilities to travel in dense terrain, avoiding collisions, crossing gaps and selecting safe passages. These capabilities are accomplished by a neuromorphic network steering the robot toward regions of low apparent motion. Our system leverages knowledge about vision processing and obstacle avoidance in insects. Our results demonstrate how insects might safely travel through diverse habitats. We anticipate our system to be a working hypothesis to study insects' travels in dense terrains. Furthermore, it illustrates that we can design novel hardware systems by understanding the underlying mechanisms driving behaviour.


Subject(s)
Vision, Ocular , Visual Perception , Animals , Insecta , Motion
2.
Front Neurosci ; 16: 813555, 2022.
Article in English | MEDLINE | ID: mdl-35237122

ABSTRACT

Neuromorphic engineering aims to build (autonomous) systems by mimicking biological systems. It is motivated by the observation that biological organisms-from algae to primates-excel in sensing their environment, reacting promptly to their perils and opportunities. Furthermore, they do so more resiliently than our most advanced machines, at a fraction of the power consumption. It follows that the performance of neuromorphic systems should be evaluated in terms of real-time operation, power consumption, and resiliency to real-world perturbations and noise using task-relevant evaluation metrics. Yet, following in the footsteps of conventional machine learning, most neuromorphic benchmarks rely on recorded datasets that foster sensing accuracy as the primary measure for performance. Sensing accuracy is but an arbitrary proxy for the actual system's goal-taking a good decision in a timely manner. Moreover, static datasets hinder our ability to study and compare closed-loop sensing and control strategies that are central to survival for biological organisms. This article makes the case for a renewed focus on closed-loop benchmarks involving real-world tasks. Such benchmarks will be crucial in developing and progressing neuromorphic Intelligence. The shift towards dynamic real-world benchmarking tasks should usher in richer, more resilient, and robust artificially intelligent systems in the future.

3.
Front Neurosci ; 14: 420, 2020.
Article in English | MEDLINE | ID: mdl-32528239

ABSTRACT

Precise spike timing and temporal coding are used extensively within the nervous system of insects and in the sensory periphery of higher order animals. However, conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot take advantage of this coding strategy, due to their rate-based representation of signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying applications where temporal coding outperforms the rate coding strategies of ANNs is still an open challenge. Neuromorphic sensory-processing systems provide an ideal context for exploring the potential advantages of temporal coding, as they are able to efficiently extract the information required to cluster or classify spatio-temporal activity patterns from relative spike timing. Here we propose a neuromorphic model inspired by the sand scorpion to explore the benefits of temporal coding, and validate it in an event-based sensory-processing task. The task consists in localizing a target using only the relative spike timing of eight spatially-separated vibration sensors. We propose two different approaches in which the SNNs learns to cluster spatio-temporal patterns in an unsupervised manner and we demonstrate how the task can be solved both analytically and through numerical simulation of multiple SNN models. We argue that the models presented are optimal for spatio-temporal pattern classification using precise spike timing in a task that could be used as a standard benchmark for evaluating event-based sensory processing models based on temporal coding.

4.
Front Neurosci ; 14: 451, 2020.
Article in English | MEDLINE | ID: mdl-32457575

ABSTRACT

Attentional selectivity tends to follow events considered as interesting stimuli. Indeed, the motion of visual stimuli present in the environment attract our attention and allow us to react and interact with our surroundings. Extracting relevant motion information from the environment presents a challenge with regards to the high information content of the visual input. In this work we propose a novel integration between an eccentric down-sampling of the visual field, taking inspiration from the varying size of receptive fields (RFs) in the mammalian retina, and the Spiking Elementary Motion Detector (sEMD) model. We characterize the system functionality with simulated data and real world data collected with bio-inspired event driven cameras, successfully implementing motion detection along the four cardinal directions and diagonally.

5.
IEEE Trans Neural Netw Learn Syst ; 30(3): 644-656, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30047912

ABSTRACT

Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though graphical processing units are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1×1 to 7×7 . NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq field-programmable gate array (FPGA) platform and presented the results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Postsynthesis simulations using Mentor Modelsim in a 28-nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the multiply-accumulate units, and achieves a power efficiency of over 3 TOp/s/W in a core area of 6.3 mm2. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real-time interactive demonstrations.

6.
Front Neurorobot ; 11: 28, 2017.
Article in English | MEDLINE | ID: mdl-28747883

ABSTRACT

Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

7.
Expert Rev Mol Diagn ; 12(1): 49-64, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22133119

ABSTRACT

Fluorescence spectroscopy has been shown to be a useful tool for a broad variety of biological and medical applications. Many of the analytical methods, as used for tumor marker and gene mutation detection, recognition of pathogens or monitoring of cell-related processes, are based on the labeling of the investigating object with luminescent nanoparticles. Owing to their size, which is comparable to that of biomolecules, and to their extraordinary optical properties, luminescent nanoparticles could well improve the sensitivity and flexibility of current detection techniques. This article provides a general overview of the synthesis, properties and application of luminescent semiconductor, metal and inorganic nanoparticles for in vitro and in vivo diagnostics, also reflecting the aspect of biocompatibility.


Subject(s)
Diagnostic Imaging , Metal Nanoparticles , Molecular Probe Techniques , Nanomedicine/methods , Spectrometry, Fluorescence/methods , Animals , Biocompatible Materials , Biomarkers, Tumor/analysis , Diagnostic Imaging/methods , Diagnostic Imaging/trends , Fluorescent Dyes/chemistry , Humans , Luminescence , Metal Nanoparticles/chemistry , Nanomedicine/instrumentation , Particle Size , Quantum Dots
8.
Langmuir ; 27(23): 14025-32, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-21988231

ABSTRACT

A novel method for the synthesis of luminescent SiO(2)/calcium phosphate (CaP):Eu(3+) core-shell nanoparticles (NPs) was developed via a sol-gel route followed by annealing at a temperature of 800 °C. The object of this study was the investigation of the effect of pH on the formation of a CaP shell around the silica core. The resulting annealed NPs exhibited an amorphous SiO(2) core and a crystalline luminescent shell. The formation of a CaP layer was possible at pH below 4.5 and above 6.5 during the coating step. The crystal structure of the shell was studied by X-ray diffraction analysis. Hydroxyapatite (HAp) and α-tricalcium phosphate were detected as crystal phases of the surrounding layer. However, NPs produced under basic conditions exhibited a higher crystallinity of the CaP layer than did samples coated at pH below 4.5. In the pH interval between 4.5 and 6.5, no shell growth but the formation of secondary NPs containing CaO and Ca(OH)(2) was observed. Furthermore, SiO(2)/CP:Eu(3+) core-shell NPs were investigated by transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, inductively coupled plasma optical emission spectrometry, and photoluminescence spectroscopy. The resulting HAp-coated NPs were successfully tested by a cell-culture-based viability assay with respect to a later application as a luminescent marker for biomedical applications.


Subject(s)
Calcium Phosphates/chemistry , Europium/chemistry , Luminescence , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Cells, Cultured , Hydrogen-Ion Concentration , Mice , Particle Size , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL