Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroophthalmol ; 43(2): 159-167, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36719740

ABSTRACT

BACKGROUND: The examination of the optic nerve head (optic disc) is mandatory in patients with headache, hypertension, or any neurological symptoms, yet it is rarely or poorly performed in general clinics. We recently developed a brain and optic nerve study with artificial intelligence-deep learning system (BONSAI-DLS) capable of accurately detecting optic disc abnormalities including papilledema (swelling due to elevated intracranial pressure) on digital fundus photographs with a comparable classification performance to expert neuro-ophthalmologists, but its performance compared to first-line clinicians remains unknown. METHODS: In this international, cross-sectional multicenter study, the DLS, trained on 14,341 fundus photographs, was tested on a retrospectively collected convenience sample of 800 photographs (400 normal optic discs, 201 papilledema and 199 other abnormalities) from 454 patients with a robust ground truth diagnosis provided by the referring expert neuro-ophthalmologists. The areas under the receiver-operating-characteristic curves were calculated for the BONSAI-DLS. Error rates, accuracy, sensitivity, and specificity of the algorithm were compared with those of 30 clinicians with or without ophthalmic training (6 general ophthalmologists, 6 optometrists, 6 neurologists, 6 internists, 6 emergency department [ED] physicians) who graded the same testing set of images. RESULTS: With an error rate of 15.3%, the DLS outperformed all clinicians (average error rates 24.4%, 24.8%, 38.2%, 44.8%, 47.9% for general ophthalmologists, optometrists, neurologists, internists and ED physicians, respectively) in the overall classification of optic disc appearance. The DLS displayed significantly higher accuracies than 100%, 86.7% and 93.3% of clinicians (n = 30) for the classification of papilledema, normal, and other disc abnormalities, respectively. CONCLUSIONS: The performance of the BONSAI-DLS to classify optic discs on fundus photographs was superior to that of clinicians with or without ophthalmic training. A trained DLS may offer valuable diagnostic aid to clinicians from various clinical settings for the screening of optic disc abnormalities harboring potentially sight- or life-threatening neurological conditions.


Subject(s)
Deep Learning , Optic Disk , Papilledema , Humans , Optic Disk/diagnostic imaging , Artificial Intelligence , Retrospective Studies , Cross-Sectional Studies
2.
Neurology ; 97(4): e369-e377, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34011570

ABSTRACT

OBJECTIVE: To evaluate the performance of a deep learning system (DLS) in classifying the severity of papilledema associated with increased intracranial pressure on standard retinal fundus photographs. METHODS: A DLS was trained to automatically classify papilledema severity in 965 patients (2,103 mydriatic fundus photographs), representing a multiethnic cohort of patients with confirmed elevated intracranial pressure. Training was performed on 1,052 photographs with mild/moderate papilledema (MP) and 1,051 photographs with severe papilledema (SP) classified by a panel of experts. The performance of the DLS and that of 3 independent neuro-ophthalmologists were tested in 111 patients (214 photographs, 92 with MP and 122 with SP) by calculating the area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, and specificity. Kappa agreement scores between the DLS and each of the 3 graders and among the 3 graders were calculated. RESULTS: The DLS successfully discriminated between photographs of MP and SP, with an AUC of 0.93 (95% confidence interval [CI] 0.89-0.96) and an accuracy, sensitivity, and specificity of 87.9%, 91.8%, and 86.2%, respectively. This performance was comparable with that of the 3 neuro-ophthalmologists (84.1%, 91.8%, and 73.9%, p = 0.19, p = 1, p = 0.09, respectively). Misclassification by the DLS was mainly observed for moderate papilledema (Frisén grade 3). Agreement scores between the DLS and the neuro-ophthalmologists' evaluation was 0.62 (95% CI 0.57-0.68), whereas the intergrader agreement among the 3 neuro-ophthalmologists was 0.54 (95% CI 0.47-0.62). CONCLUSIONS: Our DLS accurately classified the severity of papilledema on an independent set of mydriatic fundus photographs, achieving a comparable performance with that of independent neuro-ophthalmologists. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that a DLS using mydriatic retinal fundus photographs accurately classified the severity of papilledema associated in patients with a diagnosis of increased intracranial pressure.


Subject(s)
Deep Learning , Fundus Oculi , Papilledema/diagnosis , Adolescent , Adult , Algorithms , Databases, Factual , Female , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
3.
Ann Neurol ; 88(4): 785-795, 2020 10.
Article in English | MEDLINE | ID: mdl-32621348

ABSTRACT

OBJECTIVE: To compare the diagnostic performance of an artificial intelligence deep learning system with that of expert neuro-ophthalmologists in classifying optic disc appearance. METHODS: The deep learning system was previously trained and validated on 14,341 ocular fundus photographs from 19 international centers. The performance of the system was evaluated on 800 new fundus photographs (400 normal optic discs, 201 papilledema [disc edema from elevated intracranial pressure], 199 other optic disc abnormalities) and compared with that of 2 expert neuro-ophthalmologists who independently reviewed the same randomly presented images without clinical information. Area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were calculated. RESULTS: The system correctly classified 678 of 800 (84.7%) photographs, compared with 675 of 800 (84.4%) for Expert 1 and 641 of 800 (80.1%) for Expert 2. The system yielded areas under the receiver operating characteristic curve of 0.97 (95% confidence interval [CI] = 0.96-0.98), 0.96 (95% CI = 0.94-0.97), and 0.89 (95% CI = 0.87-0.92) for the detection of normal discs, papilledema, and other disc abnormalities, respectively. The accuracy, sensitivity, and specificity of the system's classification of optic discs were similar to or better than the 2 experts. Intergrader agreement at the eye level was 0.71 (95% CI = 0.67-0.76) between Expert 1 and Expert 2, 0.72 (95% CI = 0.68-0.76) between the system and Expert 1, and 0.65 (95% CI = 0.61-0.70) between the system and Expert 2. INTERPRETATION: The performance of this deep learning system at classifying optic disc abnormalities was at least as good as 2 expert neuro-ophthalmologists. Future prospective studies are needed to validate this system as a diagnostic aid in relevant clinical settings. ANN NEUROL 2020;88:785-795.


Subject(s)
Deep Learning , Diagnostic Techniques, Ophthalmological , Image Interpretation, Computer-Assisted/methods , Optic Disk , Adult , Aged , Female , Humans , Male , Middle Aged , Ophthalmologists , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...