Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Discov Nano ; 18(1): 73, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37382835

ABSTRACT

Many promising applications of surface-enhanced Raman scattering (SERS), such as microfluidic SERS and electrochemical (EC)-SERS, require immersion of plasmonic nanostructured films in aqueous media. Correlational investigations of the optical response and SERS efficiency of solid SERS substrates immersed in water are absent in the literature. This work presents an approach for tuning the efficiency of gold films over nanospheres (AuFoN) as SERS substrates for applications in aqueous environment. AuFoN are fabricated by convective self-assembly of colloidal polystyrene nanospheres of various diameters (300-800 nm), followed by magnetron sputtering of gold films. The optical reflectance of the AuFoN and Finite-Difference Time-Domain simulations in both water and air reveal the dependence of the surface plasmon band on nanospheres' diameter and environment. SERS enhancement of a common Raman reporter on AuFoN immersed in water is analyzed under 785 nm laser excitation, but also using the 633 nm line for the films in air. The provided correlations between the SERS efficiency and optical response in both air and water indicate the best structural parameters for high SERS efficiency and highlight a route for predicting and optimizing the SERS response of AuFoN in water based on the behavior in air, which is more practical. Finally, the AuFoN are successfully tested as electrodes for EC-SERS detection of the thiabendazole pesticide and as SERS substrates integrated in a flow-through microchannel format. The obtained results represent an important step toward the development of microfluidic EC-SERS devices for sensing applications.

2.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242015

ABSTRACT

A controlled and reliable nanostructured metallic substrate is a prerequisite for developing effective surface-enhanced Raman scattering (SERS) spectroscopy techniques. In this study, we present a novel SERS platform fabricated using ultra-violet nanoimprint lithography (UV-NIL) to produce large-area, ordered nanostructured arrays. By using UV-NIL imprinted patterns in resist, we were able to overcome the main limitations present in most common SERS platforms, such as nonuniformity, nonreproducibility, low throughput, and high cost. We simulated and fabricated C-shaped plasmonic nanostructures that exhibit high signal enhancement at an excitation wavelength of 785 nm. The substrates were fabricated by directly coating the imprinted resist with a thin gold layer. Avoiding the need to etch patterns in silicon significantly reduces the time and cost of fabrication and facilitates reproducibility. The functionality of the substrates for SERS detection was validated by measuring the SERS spectra of Rhodamine 6G.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770397

ABSTRACT

As metasurfaces begin to find industrial applications there is a need to develop scalable and cost-effective fabrication techniques which offer sub-100 nm resolution while providing high throughput and large area patterning. Here we demonstrate the use of UV-Nanoimprint Lithography and Deep Reactive Ion Etching (Bosch and Cryogenic) towards this goal. Robust processes are described for the fabrication of silicon rectangular pillars of high pattern fidelity. To demonstrate the quality of the structures, metasurface lenses, which demonstrate diffraction limited focusing and close to theoretical efficiency for NIR wavelengths λ ∈ (1.3 µm, 1.6 µm), are fabricated. We demonstrate a process which removes the characteristic sidewall surface roughness of the Bosch process, allowing for smooth 90-degree vertical sidewalls. We also demonstrate that the optical performance of the metasurface lenses is not affected adversely in the case of Bosch sidewall surface roughness with 45 nm indentations (or scallops). Next steps of development are defined for achieving full wafer coverage.

4.
Food Chem ; 405(Pt A): 134713, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36335731

ABSTRACT

Thiabendazole (TBZ), a benzimidazole fungicide used for post-harvest treatment, may be a trace contaminant of food matrices. In this work, we report the first EC-SERS (electrochemical-surface enhanced Raman spectroscopy) detection of TBZ in spiked apple juice using electrochemically (EC) roughened, gold-based screen-printed electrodes (AuSPEs) and portable instrumentation. Polarizing the substrate (-0.8 V vs Ag/AgCl) improves the recorded SERS signal of TBZ, allowing to reach a limit of detection (LOD) in juice of 0.061 ppm with a relatively wide linear range (0.5-10 µM) and good intermediate precision (%RSD < 10). The recovery of TBZ from unprocessed juice was found to be more than 82 %. Furthermore, a proof-of-concept integration of AuSPEs with a miniaturized flow cell for the preconcentration of TBZ and the controlled delivery of sample and reagents has been demonstrated. This approach paves the way for integrated, portable analytical systems applicable for on-site sample collection, processing, and analysis.


Subject(s)
Malus , Metal Nanoparticles , Thiabendazole/analysis , Malus/chemistry , Gold/chemistry , Fruit and Vegetable Juices/analysis , Spectrum Analysis, Raman/methods , Electrodes , Metal Nanoparticles/chemistry
5.
Anal Chim Acta ; 1209: 339250, 2022 May 29.
Article in English | MEDLINE | ID: mdl-35569862

ABSTRACT

The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.


Subject(s)
Spectrum Analysis, Raman , Adsorption , Electrochemistry , Electrodes , Reproducibility of Results , Spectrum Analysis, Raman/methods
6.
Sensors (Basel) ; 21(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34960527

ABSTRACT

We developed a novel miniature micro-lensed fibre probe for Raman spectroscopy. The fibre probe consists of a single negative-curvature fibre (NCF) and a spliced, cleaved, micro-lensed fibre cap. Using a single NCF, we minimized the Raman background generated from the silica and maintained the diameter of the probe at less than 0.5 mm. In addition, the cap provided fibre closure by blocking the sample from entering the hollow parts of the fibre, enabling the use of the probe in in vivo applications. Moreover, the micro-lensed cap offered an improved collection efficiency (1.5-times increase) compared to a cleaved end-cap. The sensing capabilities of the micro-lensed probe were demonstrated by measuring different concentrations of glucose in aqueous solutions.


Subject(s)
Lenses , Spectrum Analysis, Raman , Equipment Design , Silicon Dioxide
7.
Opt Lett ; 45(20): 5760-5763, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057278

ABSTRACT

In this Letter, a novel all-fiber online Raman sensor with significant signal enhancement via a Fabry-Perot (FP) cavity is proposed and demonstrated. The FP cavity structure is formed by inserting a long-pass coated fiber and a gold-plated capillary into a silver-lined capillary with a gap. A corroded single-mode fiber is inserted into the gold-plated capillary to guide the excitation light into the FP cavity. The multiple reflections of excitation light in the FP cavity have significantly increased the interaction volume between the light and the sample. Experiment results have demonstrated an enhancement factor of 5 times in the detected Raman signal for ethanol compared to that measured using the silver-lined hollow-core fiber-based Raman cell without FP cavity, or 86 times compared with direct detection using a bare fiber tip. The measurement results are in good agreement with theoretical analyses. This Raman sensor with signal enhancement via the FP cavity has the potential to realize rapid sample replacement and online detection with high sensitivity and high accuracy for biochemical applications.

8.
Materials (Basel) ; 13(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861738

ABSTRACT

Visible and near-infrared spectroscopy are widely used for sensing applications but suffer from poor signal-to-noise ratios for the detection of compounds with low concentrations. Enhancement by surface plasmon resonance is a popular technique that can be utilized to increase the signal of absorption spectroscopy due to the increased near-field created close to the plasmons. Despite interest in surface-enhanced infrared absorption spectroscopy (SEIRAS), the method is usually applied in lab setups rather than real-life sensing situations. This study aimed to achieve enhanced absorption from plasmons on a fiber-optic probe and thus move closer to applications of SEIRAS. A tapered coreless fiber coated with a 100 nm Au film supported signal enhancement at visible wavelengths. An increase in absorption was shown for two dyes spanning concentrations from 5 × 10-8 mol/L to 8 × 10-4 mol/L: Rhodamine 6G and Crystal Violet. In the presence of the Au film, the absorbance signal was 2-3 times higher than from an identically tapered uncoated fiber. The results confirm that the concept of SEIRAS can be implemented on an optical fiber probe, enabling enhanced signal detection in remote sensing applications.

9.
Appl Opt ; 58(10): 2456-2462, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045037

ABSTRACT

The bulkiness of common transmission spectroscopy probes prevents applicability at remote locations such as within the body. We present the fabrication and characterization of lensed fibers for transmission spectroscopy in the near-infrared. Eigenmode simulations and measurements of the coupling efficiency are presented and applied to design the setup corresponding to the sample absorption. Sensing capabilities are demonstrated on aqueous glucose samples ranged 80 to 500 mM, obtaining a mean absolute percentage error of calibration of 4.3%. With increased flexibility, transmission spectroscopic sensors at remote locations may be achievable, for example, applied to in vivo continuous glucose monitoring.

10.
Opt Lett ; 43(24): 6029-6032, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30547996

ABSTRACT

We present the fabrication and characterization of a novel sensing configuration based on surface-enhanced Raman scattering (SERS) and two micro-lensed optical fibers. The first micro-lensed fiber is used to excite surface plasmon resonance in a gold film deposited over a mono-layer of nano-sphere surface (AuFON), and the second lensed fiber is used to collect the SERS signal. The sensing capabilities of the fabricated device are demonstrated by measuring different concentrations of Rhodamine 6G in a water solution.

11.
Micromachines (Basel) ; 9(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30424454

ABSTRACT

We demonstrate a three-port, light guiding and routing T-shaped configuration based on the combination of whispering gallery modes (WGMs) and micro-structured optical fibers (MOFs). This system includes a single mode optical fiber taper (SOFT), a slightly tapered MOF and a BaTiO3 microsphere for efficient light coupling and routing between these two optical fibers. The BaTiO3 glass microsphere is semi-immersed into one of the hollow capillaries of the MOF taper, while the single mode optical fiber taper is placed perpendicularly to the latter and in contact with the equatorial region of the microsphere. Experimental results are presented for different excitation and reading conditions through the WGM microspherical resonator, namely, through single mode optical fiber taper or the MOF. The experimental results indicate that light coupling between the MOF and the single mode optical fiber taper is facilitated at specific wavelengths, supported by the light localization characteristics of the BaTiO3 glass microsphere, with spectral Q-factors varying between 4.5 × 10³ and 6.1 × 10³, depending on the port and parity excitation.

12.
ACS Omega ; 2(12): 9127-9135, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29302634

ABSTRACT

An optical resonance method for the determination of the strain- and stress-optical coefficients of optically transparent polymers is presented and exemplified for monodisperse and bidisperse molecular weight polystyrene (PS). This method employs whispering gallery modes (WGMs) resonation inside a spheroid polymeric cavity, suspended on an optical fiber taper waist, which, in turn, is used for subjecting the polymeric resonator to controlled strain conditions. The wavelength shifts of equal order transverse electric and transverse magnetic polarization WGMs are measured, as well as their relative birefringence versus applied strain. For monodisperse PS microspheroids (2 and 50 kDa) the stress-optical coefficient is negative, contrary to the results for bulk PS in the glassy state indicating different phenyl group orientation of the PS monomer with respect to the strain direction. In the bidisperse (2 and 50 kDa) spheroid with a symmetric monomer composition, local structural irregularities are probably responsible for the observed coupling between WGMs. The method possesses metrological capabilities for probing the molecular orientation of polymer-based resonators.

13.
Opt Lett ; 41(10): 2185-8, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27176958

ABSTRACT

In this Letter, we demonstrate the fabrication and characterization of a robust and functional whispering gallery mode (WGM) resonating system based on a silver iodide phosphate glass microsphere melted on an optical fiber taper. The fabrication process is presented, together with spectral characterization of the device. The effect of the thermal annealing of the soft glass resonator on the whispering gallery modes' excitation and Q-factor is shown and discussed.

14.
Opt Lett ; 37(8): 1373-5, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22513690

ABSTRACT

In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift. Measurement results show that the sensor has the resolution of the order of 8.7×10(-4) over the refractive index range of 1.33-1.40, and temperature sensitivity of the order of 10 pm/°C in the range of 20-100 °C.


Subject(s)
Interferometry/instrumentation , Optical Fibers , Optical Phenomena , Photons , Air , Glycerol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL