Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39124535

ABSTRACT

This study focused on preparing composite nanomats by incorporating silver nanoparticles (AgNPs) in polyvinylidene fluoride (PVDF) nanofibers through the electrospinning process. A short review of piezoelectric PVDF-related research is presented. PVDF is known for its biocompatibility and piezoelectric properties. Since electrical signals in biological tissues have been shown to be relevant for therapeutic applications, the influence of the addition of AgNPs to PVDF on its piezoelectricity is studied, due to the ability of AgNPs to increase the piezoelectric signal, along with providing antibacterial properties. The prepared samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. In addition, the biological activity of composites was examined using a cytotoxicity assay and an assessment of the antibacterial activity. The obtained results show that the incorporation of AgNPs into PVDF nanofibers further enhances the piezoelectricity (crystalline ß-phase fraction), already improved by the electrospinning process, compared to solution-casted samples, but only with a AgNPs/PVDF concentration of up to 0.3%; a further increase in the nanoparticles led to a ß-phase reduction. The cytotoxicity assay showed a promising effect of PVDF/AgNPs nanofibers on the MDA-MB-231 breast cancer cell line, following the non-toxicity displayed in regard to the healthy MRC-5 cell line. The antibacterial effect of PVDF/AgNPs nanofibers showed promising antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, as a result of the Ag content. The anticancer activity, combined with the electrical properties of nanofibers, presents new possibilities for smart, multifunctional materials for cancer treatment development.

2.
Materials (Basel) ; 17(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063747

ABSTRACT

This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.

3.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39065702

ABSTRACT

Recent advances in regenerative medicine provide encouraging strategies to produce artificial skin substitutes. Gelatin scaffolds are successfully used as wound-dressing materials due to their superior properties, such as biocompatibility and the ability to mimic the extracellular matrix of the surrounding environment. In this study, five gelatin combination solutions were prepared and successfully electrospun using an electrospinning technique. After careful screening, the optimal concentration of the most promising combination was selected for further investigation. The obtained scaffolds were crosslinked with 25% glutaraldehyde vapor and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The incorporation of antibiotic agents such as ciprofloxacin hydrochloride and gentamicin sulfate into gelatin membranes improved the already existing antibacterial properties of antibiotic-free gelatin scaffolds against Pseudomonas aeruginosa and Staphylococcus aureus. Also, the outcomes from the in vivo model study revealed that skin regeneration was significantly accelerated with gelatin/ciprofloxacin scaffold treatment. Moreover, the gelatin nanofibers were found to strongly promote the neoangiogenic process in the in vivo chick embryo chorioallantoic membrane assay. Finally, the combination of gelatin's extracellular matrix and antibacterial agents in the scaffold suggests its potential for effective wound-healing treatments, emphasizing the importance of gelatin scaffolds in tissue engineering.

4.
Polymers (Basel) ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891472

ABSTRACT

This study investigated the thermomechanical behavior of 4D-printed polylactic acid (PLA), focusing on its response to varying temperatures and strain rates in a wide range below the glass transition temperature (Tg). The material was characterized using tension, compression, and dynamic mechanical thermal analysis (DMTA), confirming PLA's strong dependency on strain rate and temperature. The glass transition temperature of 4D-printed PLA was determined to be 65 °C using a thermal analysis (DMTA). The elastic modulus changed from 1045.7 MPa in the glassy phase to 1.2 MPa in the rubber phase, showing the great shape memory potential of 4D-printed PLA. The filament tension tests revealed that the material's yield stress strongly depended on the strain rate at room temperature, with values ranging from 56 MPa to 43 MPA as the strain rate decreased. Using a commercial FDM Ultimaker printer, cylindrical compression samples were 3D-printed and then characterized under thermo-mechanical conditions. Thermo-mechanical compression tests were conducted at strain rates ranging from 0.0001 s-1 to 0.1 s-1 and at temperatures below the glass transition temperature (Tg) at 25, 37, and 50 °C. The conducted experimental tests showed that the material had distinct yield stress, strain softening, and strain hardening at very large deformations. Clear strain rate dependence was observed, particularly at quasi-static rates, with the temperature and strain rate significantly influencing PLA's mechanical properties, including yield stress. Yield stress values varied from 110 MPa at room temperature with a strain rate of 0.1 s-1 to 42 MPa at 50 °C with a strain rate of 0.0001 s-1. This study also included thermo-mechanical adiabatic tests, which revealed that higher strain rates of 0.01 s-1 and 0.1 s-1 led to self-heating due to non-dissipated generated heat. This internal heating caused additional softening at higher strain rates and lower stress values. Thermal imaging revealed temperature increases of 15 °C and 18 °C for strain rates of 0.01 s-1 and 0.1 s-1, respectively.

5.
Technol Health Care ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38875063

ABSTRACT

BACKGROUND: The biological properties of silicone elastomers such as polydimethylsiloxane (PDMS) have widespread use in biomedicine for soft tissue implants, contact lenses, soft robots, and many other small medical devices, due to its exceptional biocompatibility. Additive manufacturing of soft materials still has significant challenges even with major advancements that have occurred in development of these technologies for customized medical devices and tissue engineering. OBJECTIVE: The aim of this study was to develop a mathematical model of tangential stress in relation to shear stress, shear rate, 3D printing pressure and velocity, for non-Newtonian gels and fluids that are used as materials for 3D printing. METHOD: This study used FENE (finitely extensible nonlinear elastic model) model, for non-Newtonian gels and fluids to define the dependences between tangential stress, velocity, and pressure, considering viscosity, shear stress and shear rates as governing factors in soft materials friction and adhesion. Experimental samples were fabricated as showcases, by SLA and FDM 3D printing technologies: elastic polymer samples with properties resembling elastic properties of PDMS and thermoplastic polyurethane (TPU) samples. Experimental 3D printing parameters were used in the developed analytical solution to analyse the relationships between governing influential factors (tangential stress, printing pressure, printing speed, shear rate and friction coefficient). Maple software was used for numerical modelling. RESULTS: Analytical model applied on a printed elastic polymer, at low shear rates, exhibited numerical values of tangential stress of 0.208-0.216 N m - 2 at printing velocities of 0.9 to 1.2 mm s - 1, while the coefficient of friction was as low as 0.09-0.16. These values were in accordance with experimental data in literature. Printing pressure did not significantly influence tangential stress, whereas it was slightly influenced by shear rate changes. Friction coefficient linearly increased with tangential stress. CONCLUSION: Simple analytical model of friction for elastic polymer in SLA 3D printing showed good correspondence with experimental literature data for low shear rates, thus indicating possibility to use it for prediction of printing parameters towards desired dimensional accuracy of printed objects. Further development of this analytical model should enable other shear rate regimes, as well as additional soft materials and printing parameters.

6.
Biomimetics (Basel) ; 9(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38534854

ABSTRACT

This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and cartilage, ligaments, muscle tissue, peripheral nerves, and artificial blood vessels. Natural spider silk synthesis is reviewed, and the further recombinant production of spider silk proteins. Research insights into possible spider silk structures, like fibers (1D), coatings (2D), and 3D constructs, including porous structures, hydrogels, and organ-on-chip designs, have been reviewed considering a design of bioactive materials for smart medical implants and drug delivery systems. Silk is one of the toughest natural materials, with high strain at failure and mechanical strength. Novel biomaterials with silk fibroin can mimic the tissue structure and promote regeneration and new tissue growth. Silk proteins are important in designing tissue-on-chip or organ-on-chip technologies and micro devices for the precise engineering of artificial tissues and organs, disease modeling, and the further selection of adequate medical treatments. Recent research indicates that silk (films, hydrogels, capsules, or liposomes coated with silk proteins) has the potential to provide controlled drug release at the target destination. However, even with clear advantages, there are still challenges that need further research, including clinical trials.

7.
Materials (Basel) ; 16(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512458

ABSTRACT

This study was conducted on different models of biodegradable SMP (shape-memory polymer) scaffolds. A comparison was conducted utilizing a basic FDM (fused deposition modeling)/MEX (material extrusion) printer with a standard printing technique and a novel, modified, four-axis printing method with a PLA (poly lactic acid) polymer as the printing material. This way of making the 4D-printed BVS (biodegradable vascular stent) made it possible to achieve high-quality surfaces due to the difference in printing directions and improved mechanical properties-tensile testing showed a doubling in the elongation at break when using the four-axis-printed specimen compared to the regular printing, of 8.15 mm and 3.92 mm, respectfully. Furthermore, the supports created using this method exhibited a significant level of shape recovery following thermomechanical programming. In order to test the shape-memory effect, after the thermomechanical programming, two approaches were applied: one approach was to heat up the specimen after unloading it inside temperature chamber, and the other was to heat it in a warm bath. Both approaches led to an average recovery of the original height of 99.7%, while the in-chamber recovery time was longer (120 s) than the warm-bath recovery (~3 s) due to the more direct specimen heating in the latter case. This shows that 4D printing using the newly proposed four-axis printing is an effective, promising technique that can be used in the future to make biodegradable structures from SMP.

SELECTION OF CITATIONS
SEARCH DETAIL