Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; : e14485, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190567

ABSTRACT

PURPOSE: A single treatment planning system (TPS) model for matched linacs provides flexible clinical workflows from patient treatment to intensity-modulated radiation therapy (IMRT) quality assurance (QA) measurement. Since general guidelines for building a single TPS model and its validation for matched linacs are not well established, we present our RayStation photon TPS modeling strategy for matched Elekta VersaHD linacs. METHOD: The four linacs installed from 2013 to 2020 were matched in terms of Percent Depth Dose (PDD), profile, output factor and wedge factors for 6-MV, 10-MV, 15-MV, and 6-MV-FFF, and maintained following TG-142 recommendations until RayStation commissioning. The RayStation single model was built to represent all four linacs within the tolerance limits recommended by MPPG-5.a. The comprehensive validation tests were performed for one linac following MPPG-5.a and TG-119 guidelines, and spot checks for the other three. Our TPS modeling/validation method was evaluated by re-analyzing the previous 103 patient-specific IMRT/volumetric modulated arc therapy (VMAT) QA measurements with the calculated planar doses by the single model in comparison with the analysis results using four individual Pinnacle TPS models. RESULTS: For all energies, our single model PDDs were within 1% agreement of the four-linac commissioning measurements. The MPPG-5.a validation tests from 5.1 through 7.5 and all TG-119 measurements passed within the recommended tolerance limits. The IMRT QA results (mean ± standard deviation) for RayStation single model versus Pinnacle individual models were 98.9% ± 1.3% and 98.0% ± 1.4% for 6-MV, 99.9% ± 0.1% and 99.1% ± 1.9% for 10-MV, and 98.2% ± 1.3% and 97.9% ± 1.8% for 6-MV-FFF, respectively. CONCLUSION: We successfully built and validated a single photon beam model in RayStation for four Elekta Linacs. The proposed new validation methods were proven to be both efficient and effective.

2.
Med Phys ; 47(9): 4363-4371, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32281657

ABSTRACT

PURPOSE: The purpose of this study was to investigate the feasibility of using fused deposition modeling (FDM) three-dimensional (3D) printer to generate radiation compensators for high-resolution (~1 mm) intensity-modulated radiation therapy (IMRT) for small animal radiation treatment. We propose a novel method incorporating 3D-printed compensator molds filled with NaI powder. METHODS: The inverse planning module of the computational environment for radiotherapy research (CERR) software was adapted to simulate the XRAD-225Cx irradiator, both geometry and kV beam quality (the latter using a phase space file provided for XRAD-225Cx). A nine-field IMRT treatment was created for a scaled-down version of the imaging and radiation oncology core (IROC) Head and Neck IMRT credentialing test, recreated on a 2.2-cm-diameter cylindrical phantom. Optimized fluence maps comprising nine fields and a total of 2564 beamlets were calculated at resolution of 1.25 × 1.25 mm2 . A hollow compensator mold was created (using in-house software and algorithm) for each field using 3D printing with polylactic acid (PLA) filaments. The molds were then packed with sodium iodide powder (NaI, measured density ρNaI  = 2.062 g/cm3 ). The mounted compensator mold thickness was limited to 13.8 mm due to clearance issues with couch collision. At treatment delivery, each compensator was manually mounted to a customized block tray attached to the reference 40 × 40 mm2 collimator. Compensator reproducibility among three repeated 3D-printed molds was measured with Radiochromic EBT2 film. The two-dimensional (2D) dose distributions of the nine fields were compared to calculated 2D doses from CERR using gamma comparisons with distance-to-agreement criteria of 0.5-0.25 mm and dose difference criteria of 3-5%. RESULTS: Good reproducibility of 3D-printed compensator manufacture was observed with mean error of ±0.024 Gy and relative dose error of ±4.2% within the modulated part of the beam. Within the limit of 13.8 mm compensator height, a maximum radiation blocking efficiency of 91.5% was achieved. Per field, about 45.5 g of NaI powder was used. Gamma analysis on each of the nine delivered IMRT fields using radiochromic films resulted in eight of nine treatment fields with >90% pass rate with 5%/0.5 mm tolerances. However, low gamma passing rate of 49-66% (3%/0.25 mm to 5%/0.5 mm) was noted in one field, attributed to fabrication errors resulting in over-filling the mold. The nine-field treatment plan was delivered in under 30 min with no mechanical or collisional issues. CONCLUSIONS: We show the feasibility of high spatial resolution IMRT treatment on a small animal irradiator utilizing 3D-printed compensator shells packed with NaI powder. Using the PLA mold with NaI powder was attractive due to the ease of 3D printing a PLA mold at high geometric resolution and the well-balanced attenuation properties of NaI powders that prevented the mold from becoming too bulky. IMRT fields with 1.25-mm resolution are capable with significant fluence modulation with relative dose accuracy of ±4.2%.


Subject(s)
Radiotherapy, Intensity-Modulated , Animals , Printing, Three-Dimensional , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
3.
Med Phys ; 44(11): 6008-6017, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28837234

ABSTRACT

PURPOSE: To develop and validate three-dimensional (3D) conformal hippocampal sparing whole-brain radiation therapy (HA-WBRT) for Wistar rats utilizing precision 3D-printed immobilization and micro-blocks. This technique paves the way for future preclinical studies investigating brain treatments that reduce neurotoxicity. METHODS AND MATERIALS: A novel preclinical treatment planning and delivery process was developed to enable precision 3D conformal treatment and hippocampal avoidance capability for the Xrad 225cx small animal irradiator. A range of conformal avoidance plans were evaluated consisting of equiangularly spaced coplanar axial beams, with plans containing 2, 4, 7, and 8 fields. The hippocampal sparing and coverage of these plans were investigated through Monte Carlo dose calculation (SmART-Plan Xrad 225cx planning system). Treatment delivery was implemented through a novel process where hippocampal block shapes were computer generated from an MRI rat atlas which was registered to on-board cone beam CT of the rat in treatment position. The blocks were 3D printed with a tungsten-doped filament at lateral resolution of 80 µm. Precision immobilization was achieved utilizing a 3D-printed support system which enabled angled positioning of the rat head in supine position and bite block to improve coverage of the central diencephalon. Treatment delivery was verified on rodent-morphic Presage® 3D dosimeters optically scanned at 0.2-mm isotropic resolution. Biological verification of hippocampal avoidance was performed with immunohistologic staining. RESULTS: All simulated plans spared the hippocampus while delivering high dose to the brain (22.5-26.2 Gy mean dose to brain at mean hippocampal dose of 7 Gy). No significant improvement in hippocampal sparing was observed by adding beams beyond four fields. Dosimetric sparing of hippocampal region of the four-field plan was verified with the Presage® dosimeter (mean dose = 9.6 Gy, D100% = 7.1 Gy). Simulation and dosimeter match at distance-to-agreement of 2 mm and dose difference of ±3% at 91.7% gamma passing rate (passing criteria of γ < 1). Agreement is less at 1 mm and ±5% at 69.0% gamma passing rate. The four-field plan was further validated with immunohistochemistry and showed a significant reduction in DNA double-strand breaks within the spared region compared with whole-brain irradiated groups (P = 0.021). However, coverage of the whole brain was low at 48.5-57.8% of the volume receiving 30Gy at 7Gy mean hippocampal dose in simulation and 46.7-52.5% in dosimetric measurements. This can be attributed to the shape of the rat hippocampus and the inability of treatment platform to employ non-coplanar beams. CONCLUSION: A novel approach for conformal microradiation therapy using 3D-printing technology was developed, implemented, and validated. A workflow was developed to generate accurate 3D-printed blocks from registered high-resolution rat MRI atlas structures. Although hippocampus was spared with this technique, whole-brain target coverage was suboptimal, indicating that non-coplanar beams and IMRT capability may be required to meet stringent dose criteria associated with current human RTOG trials.


Subject(s)
Hippocampus/radiation effects , Organs at Risk/radiation effects , Radiotherapy, Conformal/adverse effects , Radiotherapy, Conformal/methods , Animals , Brain Neoplasms/radiotherapy , Printing, Three-Dimensional , Radiometry , Radiotherapy Planning, Computer-Assisted , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL