Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cureus ; 16(3): e55377, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38562356

ABSTRACT

Background Neuroanatomy is one of the most complex areas of anatomy to teach to medical students. Traditional study methods such as atlases and textbooks are mandatory but require significant effort to conceptualize the three-dimensional (3D) aspects of the neuroanatomical regions of interest. Objectives To test the feasibility of human anatomy teaching medical students in a virtual reality (VR) immersive environment using photorealistic three-dimensional models (PR3DM) of human anatomy, in a limited anatomical body donation program. Methods We used surface scanning technology (photogrammetry) to create PR3DM of brain dissections. The 3D models were uploaded to VR headsets and used in immersive environment classes to teach second-year medical students. Twenty-eight medical students (mean age 20.11, SD 1.42), among which 19 females (n=28/67.9%) and nine males (n=28/32.1%), participated in the study. The students had either none or minimal experience with the use of VR devices. The duration of the study was three months. After completing the curriculum, a survey was done to examine the results. Results The average rating of the students for their overall experience with the method is 4.57/5 (SD=0.63). The "Possibility to study models from many points of view" and "Good Visualization of the models" were the most agreed upon advantages, with 24 students (n=28, 85.7%), and 95% confidence intervals (CI) [0.6643, 0.9532]. The limited availability of the VR headsets was the major disadvantage as perceived by the students, with 11 students (n=28, 39.3%), 95% CI [0.2213, 0.5927] having voted for the option. The majority of the students (25) (n=28, 89.2%, SD=0.31) agreed with the statement that the use of VR facilitated their neuroanatomy education. Conclusion This study shows the future potential of this model of training in limited cadaver dissection options to provide students with modern technological methods of training. Our first results indicate a prominent level of student satisfaction from VR training with minimum negative reactions to the nature of headsets. The proof of concept for the application of photorealistic models in VR neuroanatomy training combined with the initial results of appreciation among the students predisposes the application of the method on a larger scale, adding a nuance to the traditional anatomy training methods. The low number of headsets used in the study limits the generalization of the results but offers possibilities for future perspectives of research.

2.
Cureus ; 16(3): e55395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38562360

ABSTRACT

Blunt carotid artery injury (BCI) poses a rare yet severe threat following vascular trauma, often leading to significant morbidity and mortality. We present a case of a 33-year-old male who suffered complete thrombotic occlusion of the right common carotid artery (CCA) following a workplace accident. Clinical evaluation revealed profound neurological deficits, prompting multidisciplinary surgical intervention guided by the Denver criteria (Grade I - disruption inside the vessel that results in a narrowing of the lumen by less than 25%; Grade II - dissection or intramural hematoma causing greater than 25% stenosis; Grade III - comprises pseudoaneurysm formation; Grade IV - causes total vessel occlusion; Grade V - describes vessel transection with extravasation). Surgical exploration unveiled extensive arterial damage, necessitating thrombectomy, primary repair, and double-layered patch angioplasty using an autologous saphenous vein. Postoperative recovery was uneventful, with the restoration of pulsatile blood flow confirmed by Doppler ultrasound. Three-month follow-up demonstrated patent arterial reconstruction and improved cerebral perfusion, despite the persistent neurological deficits. Our case underscores the challenges in diagnosing and managing BCI, advocating for a tailored approach based on injury severity and neurological status. While conservative management remains standard, surgical intervention offers a viable option in select cases, particularly those with complete vessel occlusion and neurological compromise. Long-term surveillance is imperative to assess the durability of arterial reconstruction and monitor for recurrent thromboembolic events. Further research is warranted to refine management algorithms and elucidate optimal treatment strategies in this rare but critical vascular pathology.

3.
Article in English | MEDLINE | ID: mdl-38386966

ABSTRACT

BACKGROUND AND OBJECTIVES: Intraoperative orientation during microsurgery has a prolonged learning curve among neurosurgical residents. Three-dimensional (3D) understanding of anatomy can be facilitated with realistic 3D anatomic models created from photogrammetry, where a series of 2-dimensional images is converted into a 3D model. This study implements an algorithm that can create photorealistic intraoperative 3D models to exemplify important steps of the operation, operative corridors, and surgical perspectives. METHODS: We implemented photograph-based and video-based scanning algorithms for uptakes using the operating room (OR) microscope, targeted for superficial structures, after surgical exposure, and deep operative corridors, in cranial microsurgery. The algorithm required between 30-45 photographs (superficial scanning), 45-65 photographs (deep scanning), or approximately 1 minute of video recording of the entire operative field to create a 3D model. A multicenter approach in 3 neurosurgical departments was applied to test reproducibility and refine the method. RESULTS: Twenty-five 3D models were created of some of the most common neurosurgical approaches-frontolateral, pterional, retrosigmoid, frontal, and temporal craniotomy. The 3D models present important steps of the surgical approaches and allow rotation, zooming, and panning of the model, enabling visualization from different surgical perspectives. The superficial and medium depth structures were consistently presented through the 3D models, whereas scanning of the deepest structures presented some technical challenges, which were gradually overcome with refinement of the image capturing process. CONCLUSION: Intraoperative photogrammetry is an accessible method to create 3D educational material to show complex anatomy and demonstrate concepts of intraoperative orientation. Detailed interactive 3D models, displaying stepwise surgical case-based anatomy, can be used to help understand details of the operative corridor. Further development includes refining or automatization of image acquisition intraoperatively and evaluation of other applications of the resulting 3D models in training and surgical planning.

4.
Acta Neurochir (Wien) ; 166(1): 46, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285198

ABSTRACT

BACKGROUND: Spinal cord hemangioblastomas are benign, highly vascular neoplasms that affect the brain and, rarely, the spinal cord. They can be solitary or as part of von Hippel-Lindau syndrome. Radiosurgery is not a suitable treatment option. Endovascular embolization can only be adjunct to surgery. METHOD: We present a detailed approach to resection of a spinal cord hemangioblastoma. A video demonstrates the microsurgical technique and discusses complication avoidance. CONCLUSION: The pitfalls to consider are preservation of normal spinal cord vessels, protection of the pia-arachnoid cleavage plane, and avoidance of tumor piecemeal removal. Careful microsurgical resection and detailed preoperative planning are key.


Subject(s)
Embolization, Therapeutic , Hemangioblastoma , Humans , Hemangioblastoma/surgery , Neck , Brain , Meninges
5.
Cureus ; 15(9): e46251, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37908958

ABSTRACT

Photogrammetry refers to the process of creating 3D models and taking measurements through the use of photographs. Photogrammetry has many applications in neurosurgery, such as creating 3D anatomical models and diagnosing and evaluating head shape and posture deformities. This review aims to summarize the uses of the technique in the neurosurgical practice and showcase the systems and software required for its implementation. A literature review was done in the online database PubMed. Papers were searched using the keywords "photogrammetry", "neurosurgery", "neuroanatomy", "craniosynostosis" and "scoliosis". The identified articles were later put through primary (abstracts and titles) and secondary (full text) screening for eligibility for inclusion. In total, 86 articles were included in the review from 315 papers identified. The review showed that the main uses of photogrammetry in the field of neurosurgery are related to the creation of 3D models of complex neuroanatomical structures and surgical approaches, accompanied by the uses for diagnosis and evaluation of patients with structural deformities of the head and trunk, such as craniosynostosis and scoliosis. Additionally, three instances of photogrammetry applied for more specific aims, namely, cervical spine surgery, skull-base surgery, and radiosurgery, were identified. Information was extracted on the software and systems used to execute the method. With the development of the photogrammetric method, it has become possible to create accurate 3D models of physical objects and analyze images with dedicated software. In the neurosurgical setting, this has translated into the creation of anatomical teaching models and surgical 3D models as well as the evaluation of head and spine deformities. Through those applications, the method has the potential to facilitate the education of residents and medical students and the diagnosis of patient pathologies.

6.
Surg Neurol Int ; 13: 48, 2022.
Article in English | MEDLINE | ID: mdl-35242414

ABSTRACT

BACKGROUND: Contrast-induced neurotoxicity is a rare event after endovascular diagnostic procedures or interventions and presents as transient neurological deficit. Herewith, we present a case of reversible complete cortical blindness after uneventful stent-assisted coiling of a medium-sized unruptured basilar artery aneurysm. CASE DESCRIPTION: A 70-year-old woman with a medium-sized 10 mm/6 mm wide neck basilar tip aneurysm was planned for endovascular obliteration of the lesion. The procedure was done under general anesthesia. The contrast agent was iso-osmolar, nonionic. The aneurysm was coiled, and a stent was placed in the left posterior cerebral artery achieving sufficient aneurysm packing. No signs of vessel obliteration were observed during the procedure. On awakening of anesthesia, the patient reported complete visual loss. Ophthalmological examination was normal. The patient was brought back to the angio-suite but there were no signs of parent vessel compromise from the endovascular implants or distal vessel occlusion. An MRI of the brain was done showing no signs of brain ischemia, just mild brain edema in both occipital lobes. Given the results of the radiological studies and clinical presentation, the diagnosis of contrast-induced neurotoxicity was accepted. In 72 h, the patient had complete resolution of the visual loss and was discharged home with no additional neurological worsening. CONCLUSION: Contrast-induced neurotoxicity is a rare event that can occur after uneventful endovascular interventions of the brain vessels. Knowledge of this rare complication, after exclusion of all other possible reversible causes, is important for the treatment and prognosis of the patient.

7.
Mol Genet Genomics ; 297(2): 357-371, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064290

ABSTRACT

At present, brain tumours remain one of the "hard-to-treat" malignancies with minimal improvement in patients' survival. Recently, miRNAs have been shown to correlate with oncogenesis and metastasis and have been investigated as potential biomarkers for diagnosis, prognosis and therapy prediction in different brain malignancies. The aim of the current study was to select an accurate and affordable brain tumour detection and grading approach. In the present study, we analysed the applicability of a restricted miRNA signature that could differentiate among patients with primary as well as metastatic brain tumours. Fresh tumour tissues were collected from Bulgarian patients (n = 38), including high-grade gliomas (n = 23), low-grade gliomas (n = 10) and brain metastases (n = 5) from lung cancer. Total RNAs enriched with microRNAs were isolated and differentially expressed miRNAs were analyzed by RT-qPCR using TaqMan Advanced miRNA assay. We selected a signature of miR-21, miR-10b, miR-7, miR-491 that showed good diagnostic potential in high-grade gliomas, low-grade gliomas and brain metastases compared with normal brain tissues. Our results showed that miR-10b could reliably differentiate brain metastases from high-grade gliomas, while miR-491 could distinguish low-grade from high-grade gliomas and brain metastases from low-grade gliomas. We observed that miR-21 and miR-7 correlated with disease recurrence, survival status and the Karnofsky Performance Status. The selected signature of miR-7, miR-21, miR-10b and miR-491 could be used as a highly accurate diagnostic, grading and prognostic biomarker in differentiating various types of brain tumours. Our data suggest that the 4-miRNAs signature could be further analysed for predicting treatment response and for future miRs-based targeted therapy. The ongoing studies on miRs-based targeted therapy related to our selected miRNA signature are also reviewed.


Subject(s)
Brain Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Brain , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Grading , Prognosis
8.
Cureus ; 14(12): e33153, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36733788

ABSTRACT

Introduction Three-dimensional (3D) printing is an affordable aid that is useful in neurosurgery. It allows for better visualization and tactile appreciation of the individual anatomy and regions of interest and therefore potentially lowers the risk of complications. There are various applications of this technology in the field of neurosurgery. Materials and methods In this paper, we present a basic methodology for the creation of a 3D printed model using only open-source software for medical image editing, model generation, pre-printing preparation, and analysis of the literature concerning the practical use of this methodology. Results The literature review on the current applications of 3D printed models in neurosurgery shows that they are mostly used for preoperative planning, surgical training, and simulation, closely followed by their use in patient-specific implants and instrumentation and medical education. MaterialiseTM Mimics is the most frequently used commercial software for a 3D modeling for preoperative planning and surgical simulation, while the most popular open-source software for the same applications is 3D Slicer. In this paper, we present the algorithm that we employ for 3D printing using HorosTM, Blender, and Cura software packages which are all free and open-source. Conclusion Three-dimensional printing is becoming widely available and of significance to neurosurgical practice. Currently, there are various applications of this technology that are less demanding in terms of technical knowledge and required fluency in medical imaging software. These predispositions open the field for further research on the possible use of 3D printing in neurosurgery.

9.
Surg Neurol Int ; 12: 262, 2021.
Article in English | MEDLINE | ID: mdl-34221593

ABSTRACT

BACKGROUND: Carotid body tumors (CBTs) are rare hypervascular lesions with critical location which makes them very challenging to treat. In rare occasions, compression of the jugular vein from the tumor mass could predispose to progressive thrombosis of intracranial venous sinuses. The latter consequently leads to intracranial hypertension (pseudotumor cerebri) with the accompanying danger to the vision. Herewith, we present our management strategy for this rare presentation of CBTs. CASE DESCRIPTION: A 38-year-old woman, with no medical history, was admitted in the emergency unit with acute onset of headache, dizziness, and vomiting. On the diagnostic imaging studies (CT venography and MRI) a near total occlusion of all cerebral venous sinuses and a large CBT (Shambin Type II) were diagnosed. Initially, the patient was treated with anticoagulants for the thrombosis and with lumbo-peritoneal (LP) shunt for the management of pseudotumor cerebri. At a second stage, after resolution of the cerebral sinus thrombosis, the CBT was completely resected under electrophysiological monitoring, without preoperative embolization. At 1-year follow-up, the patient is neurologically intact with functioning LP shunt, patent cerebral venous sinuses, without tumor recurrence. CONCLUSION: We present a rare case of CBT with intracranial complications, which was managed successfully by staged treatment. Careful study of the preoperative radiological and laboratory data, thorough preoperative planning of the tridimensional lesion anatomy, as well as meticulous microsurgical technique under intraoperative electrophysiological monitoring was essential for the successful outcome of the case.

10.
Asian J Neurosurg ; 10(4): 331-3, 2015.
Article in English | MEDLINE | ID: mdl-26425169

ABSTRACT

Extraneural metastases are a relatively rare manifestation of the primary brain tumors, and a major part of the cases has been associated with initial medulloblastoma. Herein, we present the case of a young female adult diagnosed and operated for medulloblastoma. The patient developed extraneural metastases in the first postoperative year. The condition exhibited an aggressive course of development, and the applied treatment approaches were unable to halt its progression. A short literature review identifies the predictive factors determining both prognosis and treatability of the condition; the current limitations and future perspectives of the treatment options are discussed.

11.
Mol Ecol ; 17(20): 4446-58, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18803594

ABSTRACT

Expanding populations are often less genetically diverse at their margins than at the centre of a species' range. Established, older populations of the chestnut blight fungus, Cryphonectria parasitica, are more variable for vegetative compatibility (vc) types than in expanding populations in southeastern Europe where C. parasitica has colonized relatively recently. To test whether vc types represent clones, we genotyped 373 isolates of C. parasitica from southern Italy, Romania, Bulgaria, Macedonia, Greece and Turkey using 11 sequence-characterized amplified region (SCAR) markers. Ten SCAR loci and six vegetative incompatibility (vic) loci were polymorphic in these samples. These populations are clonal by all criteria tested: (i) among 373 isolates, we found only eight multilocus haplotypes, and the same haplotypes were found in multiple countries, sometimes separated in time by as much as 12 years; (ii) the number of haplotypes observed was significantly less than expected under random mating; (iii) populations are in linkage disequilibrium; (iv) the two sets of independent markers, SCARs and vc types, are highly correlated; and (v) sexual structures of C. parasitica were found only in Bulgaria and Romania. One mating type (MAT-1) was found in 98% of the isolates sampled. In contrast, a population in northern Italy, in the central part of the range in Europe, had 12 multilocus haplotypes among 19 isolates. The spread of a few clones could be the result either of founder effect and restricted migration, or these clones have greater fitness than others and spread because they are better adapted to conditions in southeastern Europe.


Subject(s)
Ascomycota/genetics , Genetics, Population , Hippocastanaceae/microbiology , Plant Diseases/microbiology , DNA, Fungal/genetics , Europe , Genes, Mating Type, Fungal , Genetic Markers , Genetic Variation , Haplotypes , Linkage Disequilibrium , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...