Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 625(7994): 393-400, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030725

ABSTRACT

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Subject(s)
Eukaryotic Cells , Protein Biosynthesis , RNA, Messenger , Reading Frames , Ribosomes , Anticodon/genetics , Anticodon/metabolism , Codon/genetics , Codon/metabolism , Cryoelectron Microscopy , Eukaryotic Cells/chemistry , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/metabolism , Reading Frames/genetics , Ribosomes/chemistry , Ribosomes/metabolism , Ribosomes/ultrastructure , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism
2.
Chronobiol Int ; 39(11): 1533-1538, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36189750

ABSTRACT

Light can restrict the activity of an animal to a diurnal or nocturnal niche by synchronizing its endogenous clock (entrainment) which controls the sleep wake cycle. Light can also directly change an animal's activity level (masking). In mice, high illumination levels decrease activity, i.e. negative masking occurs. To investigate the role of core circadian clock genes Per1 and Per2 in masking, we used a 5-day behavioral masking protocol consisting of 3 h pulses of light given in the night at various illuminances (4-5 lux, 20 lux and 200 lux). Mice lacking the Per1 gene had decreased locomotion in the presence of a light pulse compared to wild-type, Per2 and Per1 Per2 double mutant mice. Per2 single mutant and Per1 Per2 double mutant mice did not show significantly different masking responses compared to wild-type controls. This suggests that Per1 suppresses negative masking responses in mice.


Subject(s)
Circadian Rhythm , Period Circadian Proteins , Mice , Animals , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Circadian Rhythm/genetics , Transcription Factors/genetics , Mutation , Suprachiasmatic Nucleus/metabolism
3.
FASEB J ; 35(7): e21722, 2021 07.
Article in English | MEDLINE | ID: mdl-34160105

ABSTRACT

Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time point. Finally, based on STRING analysis, we found a group of interacting genes that potentially drive POS phagocytosis in the RPE. This potential pathway consists of genes such as: Pacsin1, Syp, Camk2b, and Camk2d among others. Our findings indicate that Per1 and Per2 are necessary clock components for driving POS phagocytosis and suggest that this process is transcriptionally driven by the RPE.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Period Circadian Proteins/genetics , Phagocytosis/genetics , Photoreceptor Cells, Vertebrate/physiology , Retina/physiology , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Female , Male , Mice , Mice, Inbred C57BL , Phagocytosis/physiology , Photoreceptor Cells/physiology , Retinal Pigment Epithelium/physiology , Transcription, Genetic/genetics , Transcription, Genetic/physiology
4.
Biochim Biophys Acta Gene Regul Mech ; 1863(10): 194623, 2020 10.
Article in English | MEDLINE | ID: mdl-32795630

ABSTRACT

The retinas from Period 1 (Per1) and Period 2 (Per2) double-mutant mice (Per1-/-Per2Brdm1) display abnormal blue-cone distribution associated with a reduction in cone opsin mRNA and protein levels, up to 1 year of age. To reveal the molecular mechanisms by which Per1 and Per2 control retina development, we analyzed genome-wide gene expression differences between wild-type (WT) and Per1-/-Per2Brdm1 mice across ocular developmental stages (E15, E18 and P3). All clock genes displayed changes in transcript levels along with normal eye development. RNA-Seq data show major gene expression changes between WT and mutant eyes, with the number of differentially expressed genes (DEG) increasing with developmental age. Functional annotation of the genes showed that the most significant changes in expression levels in mutant mice involve molecular pathways relating to circadian rhythm signaling at E15 and E18. At P3, the visual cascade and the cell cycle were respectively higher and lower expressed compared to WT eyes. Overall, our study provides new insights into signaling pathways -phototransduction and cell cycle- controlled by the circadian clock in the eye during development.


Subject(s)
Cell Cycle/genetics , Eye/embryology , Eye/metabolism , Organogenesis/genetics , Period Circadian Proteins/genetics , Visual Perception/genetics , Alleles , Animals , Cell Differentiation/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genotype , Mice , Period Circadian Proteins/metabolism , Signal Transduction , Transcriptome
5.
Exp Eye Res ; 190: 107861, 2020 01.
Article in English | MEDLINE | ID: mdl-31678436

ABSTRACT

Multiple retinal cells harbor a circadian oscillator, including retinal pigment epithelial cells (RPE). However, little is known about the functions that are regulated by the RPE clock. The aim of this study was to investigate whether the circadian clock in the RPE regulates the transport of glucose and its glycolytic metabolic by-product - lactate. To that end, we first characterized the mRNA expression profile of glucose and monocarboxylate transporters in ARPE-19 cells. We found that SLC2A1 and SLC16A1 were, respectively, the most abundantly expressed glucose and lactate (monocarboxylate) transporters. We further observed that the protein products of SLC2A1 (encoding GLUT1) and SLC16A1 (encoding MCT1) localize on the apical membrane of ARPE-19 monolayers. In a subsequent time-course experiment, we found that SLC2A1 and SLC16A1 mRNA oscillated in ARPE-19 monolayers, but not in dispersed cells, suggesting that monolayer cellular organization is necessary for rhythmic regulation of these transporters. In these monolayers, we found that MCT1 proteins varied over time, in contrast to GLUT1 proteins which did not vary over time. Spectrophotometric measurements of supernatants sampled from ARPE-19 monolayer cultures revealed that glucose concentrations did not significantly differ between apical (Api) supernatants and basolateral (BL) ones. In addition, we did not find rhythms in Api or BL glucose concentrations. Conversely, we found higher lactate concentrations in Api supernatants than BL ones. Further, we found that Api lactate concentrations were rhythmic. Pearson's r revealed that the concentration gradients (Api - BL) of glucose and lactate correlated with the gene expression of respective SLC2A1 and SLC16A1 transporters. Incubation with photoreceptor outer segments (POS) affected the mRNA expression of SLC16A1 and SLC2A1 in ARPE-19 monolayers in a time-dependent manner, thus suggesting that the retina might modulate the RPE clock-controlled expression of transporters via interactions with POS. In conclusion, this work provides evidence that the transport of lactate is regulated by the circadian clock in the RPE.


Subject(s)
Circadian Clocks/physiology , Glucose Transporter Type 1/genetics , Glucose/metabolism , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/genetics , Retinal Pigment Epithelium/metabolism , Symporters/genetics , Transcriptome/physiology , Animals , Blotting, Western , Cattle , Cell Line , Cell Membrane/metabolism , Electric Impedance , Humans , Immunohistochemistry , Microscopy, Confocal , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Retinal Photoreceptor Cell Outer Segment/metabolism
6.
Chronobiol Int ; 36(11): 1592-1598, 2019 11.
Article in English | MEDLINE | ID: mdl-31441327

ABSTRACT

The presence of a circadian clock in the retinal pigment epithelium (RPE) was discovered recently. However, little is known about mechanisms or processes regulated by the RPE clock. We cultured ARPE-19 monolayers in a transwell culture system, and we found rhythmic mRNA expression of the sodium-potassium-chloride co-transporter SLC12A2. We localized the corresponding protein product, NKCC1, on the apical membrane of ARPE-19 cells. We found that concentrations of sodium, potassium, and chloride oscillated in apical supernatants. The ion concentration gradients between supernatants strongly correlated with SLC12A2 mRNA expression. Our results suggest that the circadian clock regulates ion transport by the RPE via NKCC1 expression.


Subject(s)
Circadian Clocks/physiology , Gene Expression Regulation/physiology , Solute Carrier Family 12, Member 2/metabolism , cis-trans-Isomerases/metabolism , Analysis of Variance , Cell Culture Techniques , Cell Line , Cells, Cultured , Circadian Rhythm , Humans , Immunohistochemistry , Ion Transport , Potassium/metabolism , Sodium/metabolism , Solute Carrier Family 12, Member 2/genetics , cis-trans-Isomerases/genetics
7.
Sci Rep ; 9(1): 11790, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409842

ABSTRACT

Retinal photoreceptor outer segments (POS) are renewed daily through phagocytosis by the adjacent retinal pigment epithelial (RPE) monolayer. Phagocytosis is mainly driven by the RPE circadian clock but the underlying molecular mechanisms remain elusive. Using ARPE-19 (human RPE cell-line) dispersed and monolayer cell cultures, we investigated the influence of cellular organization on the RPE clock and phagocytosis genes. PCR analysis revealed rhythmic expression of clock and phagocytosis genes in all ARPE-19 cultures. Monolayers had a tendency for higher amplitudes of clock gene oscillations. In all conditions ARNTL, CRY1, PER1-2, REV-ERBα, ITGB5, LAMP1 and PROS1 were rhythmically expressed with REV-ERBα being among the clock genes whose expression showed most robust rhythms in ARPE-19 cells. Using RPE-choroid explant preparations of the mPer2Luc knock-in mice we found that Rev-Erbα deficiency induced significantly longer periods and earlier phases of PER2-bioluminescence oscillations. Furthermore, early phagocytosis factors ß5-Integrin and FAK and the lysosomal marker LAMP1 protein levels are rhythmic. Finally, POS incubation affects clock and clock-controlled phagocytosis gene expression in RPE monolayers in a time-dependent manner suggesting that POS can reset the RPE clock. These results shed some light on the complex interplay between POS, the RPE clock and clock-controlled phagocytosis machinery which is modulated by Rev-Erbα.


Subject(s)
Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Retinal Pigment Epithelium/metabolism , Animals , Circadian Clocks/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Phagocytosis/genetics , Photoreceptor Cells, Vertebrate , RNA, Messenger/genetics , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Pigment Epithelium/cytology
8.
Environ Geochem Health ; 38(3): 885-96, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26423526

ABSTRACT

This study explores relation between dental fluorosis occurrence in schoolchildren, residents of Ritopek, a small local community near Belgrade, and fluoride exposure via drinking water. Additionally, fluoride levels were determined in children's urine and hair samples, and efforts were made to correlate them with dental fluorosis. Dental fluorosis and caries prevalence were examined in a total of 52 schoolchildren aged 7-15 years (29 boys and 23 girls). Fluoride levels in three types of samples were analyzed using composite fluoride ion-selective electrode. Results showed high prevalence of dental fluorosis (34.6 %) and low prevalence of dental caries (23.1 %, mean DMFT 0.96) among children exposed to wide range of water fluoride levels (0.11-4.14 mg/L, n = 27). About 11 % of water samples exceeded 1.5 mg/L, a drinking-water quality guideline value for fluoride given by the World Health Organization (2006). Fluoride levels in urine and hair samples ranged between 0.07-2.59 (n = 48) and 1.07-19.83 mg/L (n = 33), respectively. Severity of dental fluorosis was positively and linearly correlated with fluoride levels in drinking water (r = 0.79). Fluoride levels in urine and hair were strongly and positively correlated with levels in drinking water (r = 0.92 and 0.94, respectively). Fluoride levels in hair samples appeared to be a potentially promising biomarker of fluoride intake via drinking water on one hand, and severity of dental fluorosis on the other hand. Based on community fluorosis index value of 0.58, dental fluorosis revealed in Ritopek can be considered as "borderline" public health issue.


Subject(s)
Biomarkers/urine , Drinking Water/analysis , Fluorides/analysis , Fluorosis, Dental/epidemiology , Hair/chemistry , Adolescent , Child , Dental Caries/epidemiology , Female , Fluorides/urine , Humans , Male , Prevalence , Serbia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...