Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38867535

ABSTRACT

BACKGROUND: Smoking during pregnancy has been linked to adverse health outcomes in offspring, but the underlying mechanisms are not fully understood. To date, the effect of maternal smoking has been tested in primary tissues and animal models, but the scarcity of human tissues limits experimental studies. Evidence regarding smoking-related molecular alteration and gene expression profiles in stem cells is still lacking. METHODS: We developed a cell culture model of human amniotic fluid stem cells (hAFSCs) of nicotine (NIC) exposure to examine the impact of maternal smoking on epigenetic alterations of the fetus. RESULTS: NIC 0.1 µM(equivalent to "light" smoking, i.e., 5 cigarettes/day) did not significantly affect cell viability; however, significant alterations in DNA methylation and N6-methyladenosine (m6A) RNA methylation in hAFSCs occurred. These epigenetic changes may influence the gene expression and function of hAFSCs. Furthermore, NIC exposure caused time-dependent alterations of the expression of pluripotency genes and cell surface markers, suggesting enhanced cell stemness and impaired differentiation potential. Furthermore, NICtreated cells showed reduced mRNA levels of key adipogenic markers and hypomethylation of the promoter region of the imprinted gene H19 during adipogenic differentiation, potentially suppressing adipo/lipogenesis. Differential expression of 16 miRNAs, with predicted target genes involved in various metabolic pathways and linked to pathological conditions, including cognitive delay and fetal growth retardation, has been detected. CONCLUSIONS: Our findings highlight multi-level effects of NIC on hAFSCs, including epigenetic modifications, altered gene expression, and impaired cellular differentiation, which may contribute to long-term consequences of smoking in pregnancy and its potential impact on offspring health and development.

2.
Front Public Health ; 12: 1385387, 2024.
Article in English | MEDLINE | ID: mdl-38799687

ABSTRACT

Background: Nanoplastics, an emerging form of pollution, are easily consumed by organisms and pose a significant threat to biological functions due to their size, expansive surface area, and potent ability to penetrate biological systems. Recent findings indicate an increasing presence of airborne nanoplastics in atmospheric samples, such as polystyrene (PS), raising concerns about potential risks to the human respiratory system. Methods: This study investigates the impact of 800 nm diameter-PS nanoparticles (PS-NPs) on A549, a human lung adenocarcinoma cell line, examining cell viability, redox balance, senescence, apoptosis, and internalization. We also analyzed the expression of hallmark genes of these processes. Results: We demonstrated that PS-NPs of 800 nm in diameter significantly affected cell viability, inducing oxidative stress, cellular senescence, and apoptosis. PS-NPs also penetrated the cytoplasm of A549 cells. These nanoparticles triggered the transcription of genes comprised in the antioxidant network [SOD1 (protein name: superoxide dismutase 1, soluble), SOD2 (protein name: superoxide dismutase 2, mitochondrial), CAT (protein name: catalase), Gpx1 (protein name: glutathione peroxidase 1), and HMOX1 (protein name: heme oxygenase 1)], senescence-associated secretory phenotype [Cdkn1a (protein name: cyclin-dependent kinase inhibitor 1A), IL1A (protein name: interleukin 1 alpha), IL1B (protein name: interleukin 1 beta), IL6 (protein name: interleukin 6), and CXCL8 (protein name: C-X-C motif chemokine ligand 8)], and others involved in the apoptosis modulation [BAX (protein name: Bcl2 associated X, apoptosis regulator), CASP3 (protein name: caspase 3), and BCL2 (protein name: Bcl2, apoptosis regulator)]. Conclusion: Collectively, this investigation underscores the importance of concentration (dose-dependent effect) and exposure duration as pivotal factors in assessing the toxic effects of PS-NPs on alveolar epithelial cells. Greater attention needs to be directed toward comprehending the risks of cancer development associated with air pollution and the ensuing environmental toxicological impacts on humans and other terrestrial mammals.


Subject(s)
Alveolar Epithelial Cells , Apoptosis , Cellular Senescence , Nanoparticles , Oxidative Stress , Polystyrenes , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Polystyrenes/toxicity , Cellular Senescence/drug effects , A549 Cells , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Cell Survival/drug effects , Microplastics/toxicity
3.
Front Pharmacol ; 15: 1362217, 2024.
Article in English | MEDLINE | ID: mdl-38495101

ABSTRACT

Background: Low-dose aspirin's mechanism of action for preventing colorectal cancer (CRC) is still debated, and the optimal dose remains uncertain. We aimed to optimize the aspirin dose for cancer prevention in CRC patients through deep phenotyping using innovative biomarkers for aspirin's action. Methods: We conducted a Phase II, open-label clinical trial in 34 CRC patients of both sexes randomized to receive enteric-coated aspirin 100 mg/d, 100 mg/BID, or 300 mg/d for 3 ± 1 weeks. Biomarkers were evaluated in blood, urine, and colorectal biopsies at baseline and after dosing with aspirin. Novel biomarkers of aspirin action were assessed in platelets and colorectal tissues using liquid chromatography-mass spectrometry to quantify the extent of cyclooxygenase (COX)-1 and COX-2 acetylation at Serine 529 and Serine 516, respectively. Results: All aspirin doses caused comparable % acetylation of platelet COX-1 at Serine 529 associated with similar profound inhibition of platelet-dependent thromboxane (TX)A2 generation ex vivo (serum TXB2) and in vivo (urinary TXM). TXB2 was significantly reduced in CRC tissue by aspirin 300 mg/d and 100 mg/BID, associated with comparable % acetylation of COX-1. Differently, 100 mg/day showed a lower % acetylation of COX-1 in CRC tissue and no significant reduction of TXB2. Prostaglandin (PG)E2 biosynthesis in colorectal tumors and in vivo (urinary PGEM) remained unaffected by any dose of aspirin associated with the variable and low extent of COX-2 acetylation at Serine 516 in tumor tissue. Increased expression of tumor-promoting genes like VIM (vimentin) and TWIST1 (Twist Family BHLH Transcription Factor 1) vs. baseline was detected with 100 mg/d of aspirin but not with the other two higher doses. Conclusion: In CRC patients, aspirin 300 mg/d or 100 mg/BID had comparable antiplatelet effects to aspirin 100 mg/d, indicating similar inhibition of the platelet's contribution to cancer. However, aspirin 300 mg/d and 100 mg/BID can have additional anticancer effects by inhibiting cancerous tissue's TXA2 biosynthesis associated with a restraining impact on tumor-promoting gene expression. EUDRACT number: 2018-002101-65. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03957902.

4.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256050

ABSTRACT

Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.


Subject(s)
Alzheimer Disease , Huntington Disease , Neurodegenerative Diseases , Parkinson Disease , Female , Pregnancy , Humans , Neurodegenerative Diseases/therapy , Huntington Disease/therapy , Parkinson Disease/therapy , Stem Cells
5.
Cancers (Basel) ; 15(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37173923

ABSTRACT

BACKGROUND: The results of Aspirin prevention of colorectal adenomas in patients with familial adenomatous polyposis (FAP) are controversial. METHODS: We conducted a biomarker-based clinical study in eight FAP patients treated with enteric-coated low-dose Aspirin (100 mg daily for three months) to explore whether the drug targets mainly platelet cyclooxygenase (COX)-1 or affects extraplatelet cellular sources expressing COX-isozymes and/or off-target effects in colorectal adenomas. RESULTS: In FAP patients, low-dose Aspirin-acetylated platelet COX-1 at Serine529 (>70%) was associated with an almost complete inhibition of platelet thromboxane (TX) B2 generation ex vivo (serum TXB2). However, enhanced residual urinary 11-dehydro-TXB2 and urinary PGEM, primary metabolites of TXA2 and prostaglandin (PG)E2, respectively, were detected in association with incomplete acetylation of COX-1 in normal colorectal biopsies and adenomas. Proteomics of adenomas showed that Aspirin significantly modulated only eight proteins. The upregulation of vimentin and downregulation of HBB (hemoglobin subunit beta) distinguished two groups with high vs. low residual 11-dehydro-TXB2 levels, possibly identifying the nonresponders and responders to Aspirin. CONCLUSIONS: Although low-dose Aspirin appropriately inhibited the platelet, persistently high systemic TXA2 and PGE2 biosynthesis were found, plausibly for a marginal inhibitory effect on prostanoid biosynthesis in the colorectum. Novel chemotherapeutic strategies in FAP can involve blocking the effects of TXA2 and PGE2 signaling with receptor antagonists.

SELECTION OF CITATIONS
SEARCH DETAIL
...