Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 16(2): e13245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38643985

ABSTRACT

Cueva del Viento, located in the Canary Islands, Spain, is the Earth's sixth-longest lava tube, spanning 18,500 m, and was formed approximately 27,000 years ago. This complex volcanic cave system is characterized by a unique geomorphology, featuring an intricate network of galleries. Despite its geological significance, the geomicrobiology of Cueva del Viento remains largely unexplored. This study employed a combination of culture-dependent techniques and metabarcoding data analysis to gain a comprehensive understanding of the cave's microbial diversity. The 16S rRNA gene metabarcoding approach revealed that the coloured microbial mats (yellow, red and white) coating the cave walls are dominated by the phyla Actinomycetota, Pseudomonadota and Acidobacteriota. Of particular interest is the high relative abundance of the genus Crossiella, which is involved in urease-mediated biomineralization processes, along with the presence of genera associated with nitrogen cycling, such as Nitrospira. Culture-dependent techniques provided insights into the morphological characteristics of the isolated species and their potential metabolic activities, particularly for the strains Streptomyces spp., Paenarthrobacter sp. and Pseudomonas spp. Our findings underscore the potential of Cueva del Viento as an ideal environment for studying microbial diversity and for the isolation and characterization of novel bacterial species of biotechnological interest.


Subject(s)
Caves , Phylogeny , RNA, Ribosomal, 16S , Spain , Caves/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Biodiversity
2.
Environ Microbiome ; 19(1): 25, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659019

ABSTRACT

BACKGROUND: Moonmilk represents complex secondary structures and model systems to investigate the interaction between microorganisms and carbonatic rocks. Grotta Nera is characterized by numerous moonmilk speleothems of exceptional size hanging from the ceiling, reaching over two meters in length. In this work we combined microbiological analyses with analytical pyrolysis and carbon stable isotope data to determine the molecular composition of these complex moonmilk structures as well as the composition of the associated microbiota. RESULTS: Three moonmilk structures were dissected into the apical, lateral, and core parts, which shared similar values of microbial abundance, richness, and carbon isotopes but different water content, microbiota composition, and organic matter. Moonmilk parts/niches showed higher values of microbial biomass and biodiversity compared to the bedrock (not showing moonmilk development signs) and the waters (collected below dripping moonmilk), indicating the presence of more complex microbial communities linked to carbonate rock interactions and biomineralization processes. Although each moonmilk niche was characterized by a specific microbiota as well as a distinct organic carbon profile, statistical analyses clustered the samples in two main groups, one including the moonmilk lateral part and the bedrock and the other including the core and apical parts of the speleothem. The organic matter profile of both these groups showed two well-differentiated organic carbon groups, one from cave microbial activity and the other from the leaching of vascular plant litter above the cave. Correlation between organic matter composition and microbial taxa in the different moonmilk niches were found, linking the presence of condensed organic compounds in the apical part with the orders Nitrospirales and Nitrosopumilales, while different taxa were correlated with aromatic, lignin, and polysaccharides in the moonmilk core. These findings are in line with the metabolic potential of these microbial taxa suggesting how the molecular composition of the preserved organic matter drives the microbiota colonizing the different moonmilk niches. Furthermore, distinct bacterial and archaeal taxa known to be involved in the metabolism of inorganic nitrogen and C1 gases (CO2 and CH4) (Nitrospira, Nitrosopumilaceae, Nitrosomonadaceae, Nitrosococcaceae, and novel taxa of Methylomirabilota and Methanomassiliicoccales) were enriched in the core and apical parts of the moonmilk, probably in association with their contribution to biogeochemical cycles in Grotta Nera ecosystem and moonmilk development. CONCLUSIONS: The moonmilk deposits can be divided into diverse niches following oxygen and water gradients, which are characterized by specific microbial taxa and organic matter composition originating from microbial activities or deriving from soil and vegetation above the cave. The metabolic capacities allowing the biodegradation of complex polymers from the vegetation above the cave and the use of inorganic nitrogen and atmospheric gases might have fueled the development of complex microbial communities that, by interacting with the carbonatic rock, led to the formation of these massive moonmilk speleothems in Grotta Nera.

3.
Acta Trop ; 226: 106277, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34919951

ABSTRACT

Microbiome taxa associated with parasitic nematodes is unknown. These invertebrate parasites could act not only as reservoirs and vectors for horizontally transferred virulence factors, but could also provide a potential pool of future emerging pathogens. Trichuris trichiura and Trichuris suis are geohelminths parasitizing the caecum of primates, including humans, and pigs, respectively. The present work is a preliminary study to evaluate the bacterial communities associated with T. trichiura and T. suis, using High Throughput Sequencing and checking the possible presence of pathogens in these nematodes, to determine whether parasitic helminths act as vectors for bacterial pathogens in human and animal hosts. Five T. trichiura adult specimens were obtained from the caecum of macaque (Macaca sylvanus) and two T. suis adults were collected from the caecum of swine (Sus scrofa domestica). The 16S rRNA gene HTS approach was employed to investigate the composition and diversity of bacterial communities in Trichuris spp., with special emphasis at its intestinal level. All samples showed a rich colonization by bacteria, included, preferently, in the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria and Verrucomicrobia. A total of 36 phyla and more than 200 families were identified in the samples. Potential pathogen bacteria were detected in these helminths related to the genera Bartonella, Mycobacterium, Rickettsia, Salmonella, Escherichia/Shigella, Aeromonas and Clostridium. The presence of pathogenic bacteria in Trichuris spp. would position these species as a new threat to humans since these nematodes could spread new diseases. This study will also contribute to the understanding of the host-microbiota relation.


Subject(s)
Microbiota , Trichuriasis , Animals , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Trichuriasis/veterinary , Trichuris/genetics
4.
Article in English | MEDLINE | ID: mdl-34388083

ABSTRACT

A novel facultatively anaerobic, non-motile, Gram-stain-negative, non-endospore-forming alphaproteobacterium, strain 1011MAR3C25T, was isolated from a white biofilm colonizing the walls of the Andalusian show cave Gruta de las Maravillas (Huelva, Spain). Strain 1011MAR3C25T grew at 8-42 °C (optimum, 20-30 °C), at pH 5.0-9.0 (optimum, pH 5.0-6.0) and in the presence of 0-12 % (w/v) NaCl (optimum 3-5 %). Cells were catalase- and oxidase-positive. The strain grew heterotrophically with various carbon sources and chemoautotrophically with thiosulfate under aerobic conditions. Results of phylogenetic analysis showed that strain 1011MAR3C25T was related to Paracoccus saliphilus DSM 18447T and Paracoccus alkanivorans LMG 30882T (97.90 % and 97.32 % 16S rRNA sequence identity values, respectively). The major respiratory quinone was ubiquinone Q-10 and the predominant fatty acid was C18 : 1 ω7c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, an unidentified glycolipid and an unidentified polar lipid. The DNA G+C content was 60.3 mol%. Based on a polyphasic taxonomic study it is proposed that strain 1011MAR3C25T (=CECT 9092T=LMG 29414T) represents a novel species of the genus Paracoccus, for which the name Paracoccus onubensis sp. nov. is proposed.


Subject(s)
Caves/microbiology , Paracoccus , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Paracoccus/classification , Paracoccus/isolation & purification , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
5.
Sci Total Environ ; 800: 149465, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34391144

ABSTRACT

The thermal spring of Fetida Cave, a still active sulfuric acid cave opening at sea level and located in Santa Cesarea Terme, southeastern Salento (Apulia region, Southern Italy) hosts abundant floating white filaments. The white filaments were mainly composed of sulfur crystals surrounded by microbial mass of the phyla Epsilonbacteraeota, Proteobacteria, Bacteroidetes, and Patescibacteria. The most abundant genus in the white filaments collected from the waters in the innermost part of the cave dominated by sulfidic exhalations was Arcobacter. This abundance can be related to the higher concentration of sulfide dissolved in water, and low oxygen and pH values. Conversely, lower Arcobacter abundances were obtained in the filaments collected in the entrance and middle part of the cave, where sulfidic water mixes with seawater, as the cave is subjected to tides and the mixing of fresh (continental) with marine water. The geochemical analysis of water and atmospheric gases confirmed these environmental constraints. In fact, the highest concentrations of H2S in the air and water were recorded closest to the spring upwelling in the innermost part of the cave, and the lowest ones near the cave entrance. The metabolic versatility of Arcobacter might provide a competitive advantage in the colonization of water bodies characterized by high sulfide, low oxygen, and dynamic fluid movement.


Subject(s)
Arcobacter , Caves , Seawater , Sulfides , Sulfur
6.
PeerJ ; 9: e11386, 2021.
Article in English | MEDLINE | ID: mdl-34026356

ABSTRACT

Lava caves differ from karstic caves in their genesis and mineral composition. Subsurface microbiology of lava tube caves in Canary Islands, a volcanic archipelago in the Atlantic Ocean, is largely unknown. We have focused the investigation in a representative lava tube cave, Fuente de la Canaria Cave, in La Palma Island, Spain, which presents different types of speleothems and colored microbial mats. Four samples collected in this cave were studied using DNA next-generation sequencing and field emission scanning electron microscopy for bacterial identification, functional profiling, and morphological characterization. The data showed an almost exclusive dominance of Bacteria over Archaea. The distribution in phyla revealed a majority abundance of Proteobacteria (37-89%), followed by Actinobacteria, Acidobacteria and Candidatus Rokubacteria. These four phyla comprised a total relative abundance of 72-96%. The main ecological functions in the microbial communities were chemoheterotrophy, methanotrophy, sulfur and nitrogen metabolisms, and CO2 fixation; although other ecological functions were outlined. Genome annotations of the especially representative taxon Ga0077536 (about 71% of abundance in moonmilk) predicted the presence of genes involved in CO2 fixation, formaldehyde consumption, sulfur and nitrogen metabolisms, and microbially-induced carbonate precipitation. The detection of several putative lineages associated with C, N, S, Fe and Mn indicates that Fuente de la Canaria Cave basalts are colonized by metabolically diverse prokaryotic communities involved in the biogeochemical cycling of major elements.

7.
Astrobiology ; 20(5): 583-600, 2020 05.
Article in English | MEDLINE | ID: mdl-32364796

ABSTRACT

As part of the Biology and Mars Experiment (BIOMEX; ILSRA 2009-0834), samples of the lichen Circinaria gyrosa were placed on the exposure platform EXPOSE-R2, on the International Space Station (ISS) and exposed to space and to a Mars-simulated environment for 18 months (2014-2016) to study: (1) resistance to space and Mars-like conditions and (2) biomarkers for use in future space missions (Exo-Mars). When the experiment returned (June 2016), initial analysis showed rapid recovery of photosystem II activity in the samples exposed exclusively to space vacuum and a Mars-like atmosphere. Significantly reduced recovery levels were observed in Sun-exposed samples, and electron and fluorescence microscopy (transmission electron microscope and field emission scanning electron microscope) data indicated that this was attributable to the combined effects of space radiation and space vacuum, as unirradiated samples exhibited less marked morphological changes compared with Sun-exposed samples. Polymerase chain reaction analyses confirmed that there was DNA damage in lichen exposed to harsh space and Mars-like environmental conditions, with ultraviolet radiation combined with space vacuum causing the most damage. These findings contribute to the characterization of space- and Mars-resistant organisms that are relevant to Mars habitability.


Subject(s)
Exobiology , Lichens/physiology , Mars , Space Flight , Cell Survival , DNA Damage , Lichens/cytology , Lichens/genetics , Lichens/ultrastructure , Photosystem II Protein Complex/metabolism , Random Amplified Polymorphic DNA Technique , Spain
8.
PLoS One ; 14(8): e0220706, 2019.
Article in English | MEDLINE | ID: mdl-31393920

ABSTRACT

Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0-1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave.


Subject(s)
Caves/microbiology , Microbiota , Seawater/chemistry , Sulfuric Acids/metabolism , Bacteria/isolation & purification , Biodiversity , Biofilms , Chemoautotrophic Growth , Oxidation-Reduction , Phylogeny , Sulfur/metabolism
9.
Syst Appl Microbiol ; 41(3): 167-172, 2018 May.
Article in English | MEDLINE | ID: mdl-29395538

ABSTRACT

Two Gram-positive, catalase-positive, oxidase-negative, motile, endospore-forming, rod-shaped bacteria, designated as 0911MAR22V3T and 0911TES10J4, were isolated from air samples collected in two show caves, located in Andalusia, Southern Spain. Phylogenetic analysis based on 16S rRNA gene sequences indicated that both strains were indistinguishable and they were most closely related to Bacillus humi DSM 16318T (98%). DNA-DNA hybridization values of the strain 0911MAR22V3T with respect to strain 0911TES10J4 and B. humi DSM 16318T were 76.8% (73.9%, reciprocal) and 56.9% (63.3%, reciprocal analysis), respectively. Whole genome average nucleotide identity (ANI) values of both strains were in the threshold value for species delineation and less than 85% with B. humi. Strains 0911MAR22V3T and 0911TES10J4 grew at 10-47°C (optimum 37°C), at pH 6-9.5 and with 0-8% (w/v) NaCl (optimum 1%). In both strains the dominant isoprenoid quinone was MK-7, the major cellular polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and two more phospholipids, the predominant fatty acids were iso-C15:0 and anteiso-C15:0 and the DNA G+C content was 38mol%. On the basis of their phylogenetic relatedness and their phenotypic and genotypic features, the strains 0911MAR22V3T and 0911TES10J4 should be attributed to a novel species within the genus Bacillus, for which the name Bacillus onubensis sp. nov. is proposed. The type strain is 0911MAR22V3T (=LMG 27963T=CECT 8479T); and strain 0911TES10J4 (CECT 8478) is a reference strain.


Subject(s)
Air Microbiology , Bacillus/classification , Caves/microbiology , Phylogeny , Bacillus/genetics , Bacillus/isolation & purification , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Spain , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
10.
Astrobiology ; 17(2): 145-153, 2017 02.
Article in English | MEDLINE | ID: mdl-28206822

ABSTRACT

The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays)-the maximum doses applied for those radiation qualities-as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans. Key Words: Simulated space ionizing radiation-Gamma rays-Extremotolerance-Lichens-Circinaria gyrosa-Photosynthetic activity. Astrobiology 17, 145-153.


Subject(s)
Exobiology , Lichens/radiation effects , Models, Biological , Radiation, Ionizing , Chlorophyll/analysis , Chlorophyll A , Dose-Response Relationship, Radiation , Lichens/metabolism , Lichens/ultrastructure , Microscopy, Fluorescence , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Spectrometry, X-Ray Emission
11.
Sci Total Environ ; 518-519: 65-77, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25747366

ABSTRACT

The Circular Mausoleum tomb in the Roman Necropolis of Carmona was carved on a calcarenite sequence in an ancient quarry located in the town of Carmona, Southern Spain. This rock-cut tomb, representative of Roman burial practices, currently suffers from serious deterioration. A detailed survey over several years permitted the identification of the main tomb's pathologies and damaging processes, which include loss of material (scaling, flaking, granular disintegration), surface modifications (efflorescences, crusts and deposits) and extensive biological colonization. The results obtained in this study indicated that anthropogenic changes were largely responsible and enhanced the main alteration mechanisms observed in the Circular Mausoleum. Based on the deterioration diagnosis, effective corrective actions were proposed. This study shows that any conservative intervention in the interior of the tomb should be preceded by accurate in situ measurements and laboratory analyses to ascribe the source of the deterioration damages and thus designing effective treatments.

12.
Microbiology (Reading) ; 155(Pt 11): 3476-3490, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19778965

ABSTRACT

The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.


Subject(s)
Biodiversity , Chlorophyta/genetics , Construction Materials/microbiology , Cyanobacteria/classification , Sculpture , Biodegradation, Environmental , Calcium Carbonate , Chlorophyta/classification , Chlorophyta/isolation & purification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Mediterranean Region , Silicon Dioxide
13.
Sci Total Environ ; 405(1-3): 278-85, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18768211

ABSTRACT

In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.


Subject(s)
Biofilms , Calcium Carbonate , Chlorophyta/physiology , Cyanobacteria/physiology , Photosynthesis , Chlorophyta/classification , Chlorophyta/growth & development , Cyanobacteria/classification , Cyanobacteria/growth & development , Microbiological Techniques , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...