Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
bioRxiv ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39091849

ABSTRACT

Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification, using a Thumpd1 knockout mouse model. We find that loss of Thumpd1-dependent tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Remarkably, concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translation control as well as therapeutic interventions.

2.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39101793

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) features highly desmoplastic stroma that promotes structural and functional resistance to therapy. Lysyl oxidases (LOX, LOXL1-4) catalyze collagen cross-linking, thereby increasing stromal rigidity and facilitating therapeutic resistance. Here, we evaluate the role of lysyl oxidases in stromal desmoplasia and the effects of pan-lysyl oxidase (pan-LOX) inhibition in CCA. METHODS: Resected CCA and normal liver specimens were analyzed from archival tissues. Spontaneous and orthotopic murine models of intrahepatic CCA (iCCA) were used to assess the impact of the pan-LOX inhibitor PXS-5505 in treatment and correlative studies. The functional role of pan-LOX inhibition was interrogated through in vivo and ex vivo assays. RESULTS: All 5 lysyl oxidases are upregulated in CCA and reduced lysyl oxidase expression is correlated with an improved prognosis in resected patients with CCA. Spontaneous and orthotopic murine models of intrahepatic cholangiocarcinoma upregulate all 5 lysyl oxidase isoforms. Pan-LOX inhibition reversed mechanical compression of tumor vasculature, resulting in improved chemotherapeutic penetrance and cytotoxic efficacy. The combination of chemotherapy with pan-LOX inhibition increased damage-associated molecular pattern release, which was associated with improved antitumor T-cell responses. Pan-LOX inhibition downregulated macrophage invasive signatures in vitro, rendering tumor-associated macrophages more susceptible to chemotherapy. Mice bearing orthotopic and spontaneously occurring intrahepatic cholangiocarcinoma tumors exhibited delayed tumor growth and improved survival following a combination of pan-LOX inhibition with chemotherapy. CONCLUSIONS: CCA upregulates all 5 lysyl oxidase isoforms, and pan-LOX inhibition reverses tumor-induced mechanical forces associated with chemotherapy resistance to improve chemotherapeutic efficacy and reprogram antitumor immune responses. Thus, combination therapy with pan-LOX inhibition represents an innovative therapeutic strategy in CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Protein-Lysine 6-Oxidase , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Animals , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Mice , Humans , Tumor Microenvironment/drug effects , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Male , Amino Acid Oxidoreductases/antagonists & inhibitors , Disease Models, Animal , Cell Line, Tumor
3.
Stem Cell Res ; 79: 103475, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941881

ABSTRACT

Marfan Syndrome, a connective tissue disorder caused by Fibrillin-1 (FBN1) gene mutations, induces disease in the ocular, musculoskeletal, and cardiovascular systems and increases aortic vulnerability to rupture associated with high mortality rates. We describe an induced pluripotent stem cell line (HFD1) generated from patient-derived human dermal fibroblasts harboring a heterozygous c.3338-2A>C intronic splice acceptor site variant preceding Exon 28 of FBN1. The clonal line, which produces abnormal FBN1 splice variants, has a normal karyotype, expresses appropriate stemness markers, and maintains trilineage differentiation potential. This line represents a valuable resource for studying how abnormal splicing variants contribute to Marfan Syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Introns , Marfan Syndrome , Humans , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Induced Pluripotent Stem Cells/metabolism , Cell Line , RNA Splicing , Fibrillin-1/genetics , Cell Differentiation
4.
J Pediatric Infect Dis Soc ; 13(7): 352-362, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38780125

ABSTRACT

BACKGROUND: Risk stratification is a cornerstone of the Pediatric Infectious Diseases Society COVID-19 treatment guidance. This systematic review and meta-analysis aimed to define the clinical characteristics and comorbidities associated with critical COVID-19 in children and adolescents. METHODS: Two independent reviewers screened the literature (Medline and EMBASE) for studies published through August 31, 2023, that reported outcome data on patients aged ≤21 years with COVID-19. Critical disease was defined as an invasive mechanical ventilation requirement, intensive care unit admission, or death. Random-effects models were used to estimate pooled odds ratios (OR) with 95% confidence intervals (CI), and heterogeneity was explored through subgroup analyses. RESULTS: Among 10,178 articles, 136 studies met the inclusion criteria for review. Data from 70 studies, which collectively examined 172,165 children and adolescents with COVID-19, were pooled for meta-analysis. In previously healthy children, the absolute risk of critical disease from COVID-19 was 4% (95% CI, 1%-10%). Compared with no comorbidities, the pooled OR for critical disease was 3.95 (95% CI, 2.78-5.63) for the presence of one comorbidity and 9.51 (95% CI, 5.62-16.06) for ≥2 comorbidities. Key risk factors included cardiovascular and neurological disorders, chronic pulmonary conditions (excluding asthma), diabetes, obesity, and immunocompromise, all with statistically significant ORs > 2.00. CONCLUSIONS: While the absolute risk for critical COVID-19 in children and adolescents without underlying health conditions is relatively low, the presence of one or more comorbidities was associated with markedly increased risk. These findings support the importance of risk stratification in tailoring pediatric COVID-19 management.


Subject(s)
COVID-19 , Comorbidity , Critical Illness , Adolescent , Child , Child, Preschool , Humans , Infant , COVID-19/epidemiology , Respiration, Artificial/statistics & numerical data , Risk Factors , SARS-CoV-2 , Young Adult
5.
J Pediatric Infect Dis Soc ; 13(3): 159-185, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38339996

ABSTRACT

BACKGROUND: Since November 2019, the SARS-CoV-2 pandemic has created challenges for preventing and managing COVID-19 in children and adolescents. Most research to develop new therapeutic interventions or to repurpose existing ones has been undertaken in adults, and although most cases of infection in pediatric populations are mild, there have been many cases of critical and fatal infection. Understanding the risk factors for severe illness and the evidence for safety, efficacy, and effectiveness of therapies for COVID-19 in children is necessary to optimize therapy. METHODS: A panel of experts in pediatric infectious diseases, pediatric infectious diseases pharmacology, and pediatric intensive care medicine from 21 geographically diverse North American institutions was re-convened. Through a series of teleconferences and web-based surveys and a systematic review with meta-analysis of data for risk factors, a guidance statement comprising a series of recommendations for risk stratification, treatment, and prevention of COVID-19 was developed and refined based on expert consensus. RESULTS: There are identifiable clinical characteristics that enable risk stratification for patients at risk for severe COVID-19. These risk factors can be used to guide the treatment of hospitalized and non-hospitalized children and adolescents with COVID-19 and to guide preventative therapy where options remain available.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Adolescent , Child , Humans , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , Risk Factors , SARS-CoV-2/physiology
6.
Evolution ; 78(4): 635-651, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38253050

ABSTRACT

Sexually selected weapons, such as the antlers of deer, claws of crabs, and tusks of beaked whales, are strikingly diverse across taxa and even within groups of closely related species. Phylogenetic comparative studies have typically taken a simplified approach to investigate the evolution of weapon diversity, examining the gains and losses of entire weapons, major shifts in size or type, or changes in location. Less understood is how individual weapon components evolve and assemble into a complete weapon. We addressed this question by examining weapon evolution in the diverse, multi-component hind-leg and body weapons of leaf-footed bugs, superfamily Coreoidea (Hemiptera: Heteroptera). Male leaf-footed bugs use their morphological weapons to fight for access to mating territories. We used a large multilocus dataset comprised of ultraconserved element loci for 248 species and inferred evolutionary transitions among component states using ancestral state estimation. Our results suggest that weapons added components over time with some evidence of a cyclical evolutionary pattern-gains of components followed by losses and then gains again. Furthermore, our best estimate indicated that certain trait combinations evolved repeatedly across the phylogeny, suggesting that they function together in battle or that they are genetically correlated. This work reveals the remarkable and dynamic evolution of weapon form in the leaf-footed bugs and provides insights into weapon assembly and disassembly over evolutionary time.


Subject(s)
Deer , Heteroptera , Animals , Phylogeny , Heteroptera/genetics , Heteroptera/anatomy & histology , Lower Extremity , Foot , Whales
7.
medRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293040

ABSTRACT

Background: Risk stratification is a cornerstone of the Pediatric Infectious Diseases Society COVID-19 treatment guidance. This systematic review and meta-analysis aimed to define the clinical characteristics and comorbidities associated with critical COVID-19 in children and adolescents. Methods: Two independent reviewers screened the literature (Medline and EMBASE) for studies published through August 2023 that reported outcome data on patients aged ≤21 years with COVID-19. Critical disease was defined as an invasive mechanical ventilation requirement, intensive care unit admission, or death. Random effects models were used to estimate pooled odds ratios (OR) with 95% confidence intervals (CI), and heterogeneity was explored through subgroup analyses. Results: Among 10,178 articles, 136 studies met the inclusion criteria for review. Data from 70 studies, which collectively examined 172,165 children and adolescents with COVID-19, were pooled for meta-analysis. In previously healthy children, the absolute risk of critical disease from COVID-19 was 4% (95% CI, 1%-10%). Compared with no comorbidities, the pooled OR for critical disease was 3.95 (95% CI, 2.78-5.63) for presence of one comorbidity and 9.51 (95% CI, 5.62-16.06) for ≥2 comorbidities. Key risk factors included cardiovascular and neurological disorders, chronic pulmonary conditions (excluding asthma), diabetes, obesity, and immunocompromise, all with statistically significant ORs >2.00. Conclusions: While the absolute risk for critical COVID-19 in children and adolescents without underlying health conditions is relatively low, the presence of one or more comorbidities was associated with markedly increased risk. These findings support the importance of risk stratification in tailoring pediatric COVID-19 management.

8.
J Evol Biol ; 37(1): 28-36, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285664

ABSTRACT

Theory predicts that traits with heightened condition dependence, such as sexually selected traits, should be affected by inbreeding to a greater degree than other traits. The presence of environmental stress may compound the negative consequences of inbreeding depression. In this study, we examined inbreeding depression across multiple traits and whether it increased with a known form of environmental stress. We conducted our experiment using both sexes of the sexually dimorphic leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae). Adult male cactus bugs have enlarged hind legs used as weapons in male-male contests; these traits, and their homologue in females, have been previously found to exhibit high condition dependence. In this study, we employed a small developmental group size as an environmental stress challenge. Nymph N. femorata aggregate throughout their juvenile stages, and previous work has shown the negative effects of small group size on survivorship and body size. We found evidence of inbreeding depression for survival and seven of the eight morphological traits measured in both sexes. Inbreeding depression was higher for the size of the male weapon and the female homolog. Additionally, small developmental group size negatively affected survival to adulthood. However, small group size did not magnify the effects of inbreeding on morphological traits. These findings support the hypothesis that traits with heightened condition dependence exhibit higher levels of inbreeding depression.


Subject(s)
Heteroptera , Inbreeding Depression , Animals , Female , Male , Heteroptera/anatomy & histology , Sexual Behavior, Animal , Phenotype , Body Size , Inbreeding
9.
Am J Med Genet A ; 194(5): e63505, 2024 05.
Article in English | MEDLINE | ID: mdl-38168469

ABSTRACT

Data science methodologies can be utilized to ascertain and analyze clinical genetic data that is often unstructured and rarely used outside of patient encounters. Genetic variants from all genetic testing resulting to a large pediatric healthcare system for a 5-year period were obtained and reinterpreted utilizing the previously validated Franklin© Artificial Intelligence (AI). Using PowerBI©, the data were further matched to patients in the electronic healthcare record to associate with demographic data to generate a variant data table and mapped by ZIP codes. Three thousand and sixty-five variants were identified and 98% were matched to patients with geographic data. Franklin© changed the interpretation for 24% of variants. One hundred and fifty-six clinically actionable variant reinterpretations were made. A total of 739 Mendelian genetic disorders were identified with disorder prevalence estimation. Mapping of variants demonstrated hot-spots for pathogenic genetic variation such as PEX6-associated Zellweger Spectrum Disorder. Seven patients were identified with Bardet-Biedl syndrome and seven patients with Rett syndrome amenable to newly FDA-approved therapeutics. Utilizing readily available software we developed a database and Exploratory Data Analysis (EDA) methodology enabling us to systematically reinterpret variants, estimate variant prevalence, identify conditions amenable to new treatments, and localize geographies enriched for pathogenic variants.


Subject(s)
Artificial Intelligence , Data Science , Humans , Child , Prevalence , Genetic Testing/methods , ATPases Associated with Diverse Cellular Activities
SELECTION OF CITATIONS
SEARCH DETAIL