Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(18): 7764-7780, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28817277

ABSTRACT

We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.


Subject(s)
Allosteric Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Pyridines/pharmacology , Pyridines/pharmacokinetics , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Female , HEK293 Cells , Heterocyclic Compounds, 3-Ring/adverse effects , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Male , Molecular Docking Simulation , Pyridines/adverse effects , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
J Med Chem ; 57(3): 861-77, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24392688

ABSTRACT

A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.


Subject(s)
Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Receptor, Metabotropic Glutamate 5/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Administration, Oral , Allosteric Regulation , Animals , Antiparkinson Agents/adverse effects , Biological Availability , Cell Membrane Permeability , Dogs , Dyskinesia, Drug-Induced/drug therapy , HEK293 Cells , Humans , Hypersensitivity, Delayed/chemically induced , Levodopa/adverse effects , Macaca fascicularis , Madin Darby Canine Kidney Cells , Male , Microsomes, Liver/metabolism , Models, Molecular , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/physiopathology , Pyrazines/pharmacology , Pyrazines/toxicity , Pyrazoles/pharmacology , Pyrazoles/toxicity , Radioligand Assay , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
Curr Top Med Chem ; 13(7): 837-42, 2013.
Article in English | MEDLINE | ID: mdl-23578027

ABSTRACT

Essential nutrients are attractive targets for the transport of biologically active agents across cell membranes, since many are substrates for active cellular importation pathways. The sodium-dependent multivitamin transporter (SMVT) is among the best characterized of these, and biotin derivatives have been its most popular targets. We have surveyed 45 derivatives of pantothenic acid, another substrate of SMVT, long known as a competitive inhibitor of biotin transport. Variations of the ß-alanyl fragment of pantothenate were uniformly rejected by the transporter, including derivatives with very similar steric and acidic characteristics to the natural substrate. The secondary hydroxyl of the 2,2-dimethyl-1,3-propanediol (pantoyl) fragment was the only position at which potential linkers could be attached while retaining activity as an inhibitor of biotin uptake and a substrate for sodium-dependent transport. However, triazole conjugates to several drug-like cargo motifs were not accepted as substrates by human SMVT in cell culture. Two compounds were observed which did not inhibit biotin uptake but were themselves transported in a sodium-dependent fashion, suggesting more complex behavior than expected. These studies represent the most extensive examination to date of pantothenate as an anchor for SMVT-mediated drug delivery, showing that this route requires further investigation before being judged promising.


Subject(s)
Pantothenic Acid/analogs & derivatives , Pantothenic Acid/pharmacology , Symporters/antagonists & inhibitors , Biotin/antagonists & inhibitors , Biotin/metabolism , Humans , Ligands , Molecular Structure , Pantothenic Acid/chemical synthesis , Pantothenic Acid/chemistry , Structure-Activity Relationship , Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...