Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 11(6)2020 06 20.
Article in English | MEDLINE | ID: mdl-32575747

ABSTRACT

Symbiotic interactions exist within a parasitism to mutualism continuum that is influenced, among others, by genes and context. Dynamics of intracellular invasion, replication, and prevalence may underscore both host survivability and symbiont stability. More infectious symbionts might exert higher corresponding costs to hosts, which could ultimately disadvantage both partners. Here, we quantify infection patterns of diverse Paraburkholderia symbiont genotypes in their amoeba host Dictyostelium discoideum and probe the relationship between these patterns and host outcomes. We exposed D. discoideum to thirteen strains of Paraburkholderia each belonging to one of the three symbiont species found to naturally infect D. discoideum: Paraburkholderia agricolaris, Paraburkholderia hayleyella, and Paraburkholderia bonniea. We quantified the infection prevalence and intracellular density of fluorescently labeled symbionts along with the final host population size using flow cytometry and confocal microscopy. We find that infection phenotypes vary across symbiont strains. Symbionts belonging to the same species generally display similar infection patterns but are interestingly distinct when it comes to host outcomes. This results in final infection loads that do not strongly correlate to final host outcomes, suggesting other genetic factors that are not a direct cause or consequence of symbiont abundance impact host fitness.


Subject(s)
Burkholderiaceae/genetics , Dictyostelium/genetics , Host-Parasite Interactions/genetics , Symbiosis/genetics , Amoeba/genetics , Amoeba/microbiology , Burkholderiaceae/pathogenicity , Dictyostelium/microbiology , Genotype , Host Microbial Interactions/genetics , Phenotype , Phylogeny
2.
Mol Ecol ; 28(4): 847-862, 2019 02.
Article in English | MEDLINE | ID: mdl-30575161

ABSTRACT

The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoeba Dictyostelium discoideum, certain strains of Burkholderia bacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. Some Burkholderia strains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence of Burkholderia symbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates of D. discoideum and found 25% infected with Burkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions by Burkholderia to the symbiotic lifestyle. Finally, we tested the ability of 38 strains of Burkholderia from D. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis in D. discoideum. Only D. discoideum native isolates belonging to the Burkholderia agricolaris, B. hayleyella, and B. bonniea species were able to form persistent symbiotic associations with D. discoideum. The Burkholderia-Dictyostelium relationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.


Subject(s)
Amoeba/microbiology , Burkholderia/genetics , Burkholderia/physiology , Burkholderia/classification , Dictyostelium/classification , Dictyostelium/genetics , Dictyostelium/physiology , Phylogeny , Symbiosis/genetics , Symbiosis/physiology
3.
Elife ; 72018 12 31.
Article in English | MEDLINE | ID: mdl-30596477

ABSTRACT

Recent symbioses, particularly facultative ones, are well suited for unravelling the evolutionary give and take between partners. Here we look at variation in natural isolates of the social amoeba Dictyostelium discoideum and their relationships with bacterial symbionts, Burkholderia hayleyella and Burkholderia agricolaris. Only about a third of field-collected amoebae carry a symbiont. We cured and cross-infected amoebae hosts with different symbiont association histories and then compared host responses to each symbiont type. Before curing, field-collected clones did not vary significantly in overall fitness, but infected hosts produced morphologically different multicellular structures. After curing and reinfecting, host fitness declined. However, natural B. hayleyella hosts suffered fewer fitness costs when reinfected with B. hayleyella, indicating that they have evolved mechanisms to tolerate their symbiont. Our work suggests that amoebae hosts have evolved mechanisms to tolerate specific acquired symbionts; exploring host-symbiont relationships that vary within species may provide further insights into disease dynamics.


Subject(s)
Adaptation, Biological , Adaptation, Physiological , Burkholderia/growth & development , Burkholderia/physiology , Dictyostelium/microbiology , Dictyostelium/physiology , Symbiosis , Dictyostelium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL