Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
6.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693443

ABSTRACT

Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge, we developed ONIX, an open-source data acquisition system with high data throughput (2GB/sec) and low closed-loop latencies (<1ms) that uses a novel 0.3 mm thin tether to minimize behavioral impact. Head position and rotation are tracked in 3D and used to drive active commutation without torque measurements. ONIX can acquire from combinations of passive electrodes, Neuropixels probes, head-mounted microscopes, cameras, 3D-trackers, and other data sources. We used ONIX to perform uninterrupted, long (~7 hours) neural recordings in mice as they traversed complex 3-dimensional terrain. ONIX allowed exploration with similar mobility as non-implanted animals, in contrast to conventional tethered systems which restricted movement. By combining long recordings with full mobility, our technology will enable new progress on questions that require high-quality neural recordings during ethologically grounded behaviors.

7.
BMC Genomics ; 24(1): 19, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36639634

ABSTRACT

BACKGROUND: Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS: A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS: Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.


Subject(s)
Coleoptera , Insecticides , Animals , Zea mays/physiology , Coleoptera/genetics , Larva/metabolism , Poaceae/genetics , Insecticides/metabolism , Pest Control, Biological , Plants, Genetically Modified/genetics , Endotoxins
9.
G3 (Bethesda) ; 12(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35234880

ABSTRACT

Diabrocite corn rootworms are one of the most economically significant pests of maize in the United States and Europe and an emerging model for insect-plant interactions. Genome sizes of several species in the genus Diabrotica were estimated using flow cytometry along with that of Acalymma vittatum as an outgroup. Genome sizes ranged between 1.56 and 1.64 gigabase pairs and between 2.26 and 2.59 Gb, respectively, for the Diabrotica subgroups fucata and virgifera; the Acalymma vittatum genome size was around 1.65 Gb. This result indicated that a substantial increase in genome size occurred in the ancestor of the virgifera group. Further analysis of the fucata group and the virgifera group genome sequencing reads indicated that the genome size difference between the Diabrotica subgroups could be attributed to a higher content of transposable elements, mostly miniature inverted-transposable elements and gypsy-like long terminal repeat retroelements.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , DNA Transposable Elements/genetics , Genome Size , Insecta/genetics , Larva , Zea mays/genetics
10.
BMC Genomics ; 22(1): 639, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34479486

ABSTRACT

BACKGROUND: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS: Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS: Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.


Subject(s)
Bacillus thuringiensis , Coleoptera , Pesticides , Animals , Bacillus thuringiensis/genetics , Cell Survival , Coleoptera/genetics , Endotoxins/toxicity , Insecticide Resistance , Larva/genetics , Pest Control, Biological , Plants, Genetically Modified/genetics , Up-Regulation , Zea mays/genetics
11.
Pest Manag Sci ; 77(2): 860-868, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32946636

ABSTRACT

BACKGROUND: Western corn rootworm (WCR) pyrethroid resistance has been confirmed in the western US Corn Belt. Toxicological and biochemical studies indicated that multiple mechanisms of resistance might be involved in the resistance trait, such as enhanced metabolism and/or kdr target-site mutation(s) in the voltage-gated sodium channels. To characterize the mechanisms of WCR pyrethroid resistance at the molecular level, pairwise comparisons were made between RNA-Seq data collected from pyrethroid-resistant and -susceptible WCR populations. Gene expression levels and sodium channel sequences were evaluated. RESULTS: Seven transcripts exhibited significantly different expression (q ≤ 0.05) when comparing field-collected pyrethroid-resistant (R-Field) and -susceptible (S-Field) WCR populations. Three of the differentially expressed transcripts were P450s overexpressed in R-Field (9.2-26.2-fold). A higher number (99) of differentially expressed transcripts was found when comparing laboratory-derived pyrethroid-resistant (R-Lab) and -susceptible (S-Lab) WCR populations. Eight of the significant transcripts were P450s overexpressed in R-Lab (2.7-39.8-fold). This study did not detect kdr mutations in pyrethroid-resistant WCR populations. Other differentially expressed transcripts that may play a role in WCR pyrethroid resistance are discussed. CONCLUSION: This study revealed that P450-mediated metabolism is likely to be a major mechanism of WCR pyrethroid resistance, which could affect the efficacy of other insecticides sharing similar metabolic pathways. Additionally, results suggested that although laboratory selection of a pyrethroid-resistant WCR population may help to characterize resistance mechanisms, a field-selected population provided rare and perhaps major variants corresponding to the resistance trait.


Subject(s)
Coleoptera , Insecticides , Pyrethrins , Animals , Coleoptera/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Pyrethrins/pharmacology , Zea mays/genetics
12.
Ann Plast Surg ; 86(4): 421-423, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32881751

ABSTRACT

ABSTRACT: The authors present 3 unique cases of complex fistula formations because of orbital fracture repair with a Teflon (polytetrafluroethylene) implant. A 26-year-old man presented with dacryocystitis and a cutaneous fistula 8 years after left orbital floor and medial wall fracture repair with a Teflon implant. A 46-year-old woman suffered orbital trauma after a motor vehicle accident as a teenager and the fracture was repaired with Teflon implant. Thirty-two years later, she presented with lower eyelid fistula, ectropion, and retraction. A 65-year-old woman also previously had Teflon implants for the repair of her left inferior and lateral orbital rim after a motor vehicle accident. Twenty-five years later, she presented with chronic infections involving the repaired areas, as well as left lower lid ectropion and fistula formation. The woven material nature of Teflon acted as a nidus for infection, inflammation, and led to complex cutaneous fistula formations in these patients.


Subject(s)
Orbital Diseases , Orbital Fractures , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Orbit , Orbital Fractures/etiology , Orbital Fractures/surgery , Polytetrafluoroethylene/adverse effects , Prostheses and Implants
13.
Pestic Biochem Physiol ; 164: 165-172, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32284123

ABSTRACT

Western corn rootworm (WCR) pyrethroid resistance has been previously reported in the United States (US) western Corn Belt, and cross-resistance and synergism studies suggested that both target site insensitivity and enhanced metabolism may be conferring WCR resistance to pyrethroids. The present study aimed to investigate the potential mechanisms of WCR pyrethroid resistance and to estimate the heritability of the resistance trait. Biochemical assays using model substrates and spectrophotometry revealed 2-4-fold higher activity of P450s and esterases in pyrethroid-resistant WCR populations, whereas the biological activity of glutathione S-transferase was similar between populations tested. No mutation in the voltage-gated sodium channel was detected in pyrethroid-resistant WCR individuals by sequencing PCR products containing the para-homologous L1014, T929, and M918 amino acid positions that are commonly associated with target site mutations in other pyrethroid-resistant insects. A pilot estimation of pyrethroid resistance heritability obtained during laboratory selection of a WCR population suggested a major genetic component of the resistance trait and predicted a 10-fold increase in WCR bifenthrin resistance within ~7 generations of insecticide lethal exposure. Results support earlier indirect evidence that enhanced metabolism may be contributing to WCR resistance to pyrethroids and illustrates the potential of WCR pyrethroid resistance evolution.


Subject(s)
Coleoptera , Insecticides , Pyrethrins , Animals , Insecticide Resistance , Larva , Zea mays
14.
Insect Biochem Mol Biol ; 118: 103285, 2020 03.
Article in English | MEDLINE | ID: mdl-31760137

ABSTRACT

Insecticides are a key tool in the management of many insect pests of agriculture, including soybean aphids. The selection imposed by insecticide use has often lead to the evolution of resistance by the target pest through enhanced detoxification mechanisms. We hypothesised that exposure of insecticide-susceptible aphids to sublethal doses of insecticides would result in the up-regulation of genes involved in detoxification of insecticides, revealing the genes upon which selection might act in the field. We used the soybean aphid biotype 1 reference genome, version 6.0 as a reference to analyze RNA-Seq data. We identified multiple genes with potential detoxification roles that were up-regulated 12 h after sublethal exposure to esfenvalerate or thiamethoxam. However, these genes were part of a dramatic burst of differential gene expression in which thousands of genes were up- or down-regulated, rather than a defined response to insecticides. Interestingly, the transcriptional burst observed at 12 h s declined dramatically by 24-hrs post-exposure, suggesting a general stress response that may become fine-tuned over time.


Subject(s)
Aphids/drug effects , Gene Expression/drug effects , Genes, Insect/drug effects , Insecticides/metabolism , Nitriles/metabolism , Pyrethrins/metabolism , Thiamethoxam/metabolism , Animals , Aphids/genetics , Down-Regulation/drug effects , Up-Regulation/drug effects
15.
Insect Biochem Mol Biol ; 105: 69-78, 2019 02.
Article in English | MEDLINE | ID: mdl-30654011

ABSTRACT

We examined the genome of the soybean aphid, Aphis glycines, and an updated genome assembly of the pea aphid, Acyrthosiphon pisum, for members of the three major families of chemoreceptors, the Odorant Receptors (ORs), Gustatory Receptors (GRs) and Ionotropic Receptors (IRs), as well as the Odorant Binding Proteins (OBPs). The soybean aphid has 47 ORs, 61 GRs, 19 IRs, and 10 OBPs, compared with 87 ORs, 78 Grs, 19 IRs, and 18 OBPs in the pea aphid, with variable numbers of pseudogenes in the OR and GR families. Phylogenetic analysis reveals that while all of the IRs are simple orthologs between these two species, the OR, GR, and OBP families in the pea aphid have experienced major expansions of particular gene lineages and fewer losses of gene lineages. This imbalance in birth-and-death of chemosensory genes has led to the larger pea aphid gene repertoire, which might be related to the broader host range of pea aphids versus the specialization of soybean aphids on a single summer host plant. Examination of the expression levels of these chemosensory genes in parthenogenetic and sexual females and males of pea aphids revealed multiple genes that are differentially expressed in sexual females or males and might be involved in reproductive biology. Examination of the soybean aphid genes in parthenogenetic females under multiple stressors revealed multiple genes whose expression levels changed with heat or starvation stress, the latter potentially important in finding new food sources.


Subject(s)
Aphids/metabolism , Receptors, Ionotropic Glutamate/metabolism , Receptors, Odorant/metabolism , Animals , Aphids/genetics , Pisum sativum , Receptors, Ionotropic Glutamate/genetics , Receptors, Odorant/genetics , Glycine max
16.
Sci Rep ; 8(1): 1931, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386578

ABSTRACT

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Subject(s)
Agriculture , Coleoptera/genetics , Genome, Insect , Genomics , Solanum tuberosum/parasitology , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Female , Gene Expression Regulation , Genetic Variation , Genetics, Population , Host-Parasite Interactions/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Male , Molecular Sequence Annotation , Multigene Family , Pest Control, Biological , Phylogeny , RNA Interference , Transcription Factors/metabolism
17.
Curr Opin Insect Sci ; 21: 68-74, 2017 06.
Article in English | MEDLINE | ID: mdl-28822491

ABSTRACT

Gene flow via immigration affects rate of evolution of resistance to a pest management tactic, while emigration from a resistant population can spread resistance alleles spatially. Whether resistance detected across the landscape reflects ongoing de novo evolution in different hotspots or spread from a single focal population can determine the most effective mitigation strategy. Pest dispersal dynamics determine the spatio-temporal scale at which mitigation tactics must be applied to contain or reverse resistance in an area. Independent evolution of resistance in different populations appears common but not universal. Conversely, spatial spread appears to be almost inevitable. However, rate and scale of spread depends largely on dispersal dynamics and interplay with factors such as fitness costs, spatially variable selection pressure and whether resistance alleles are spreading through an established population or being carried by populations colonizing new territory.


Subject(s)
Animal Distribution , Insecta/genetics , Insecticide Resistance/genetics , Animals , Biological Evolution , Gene Flow , Insecta/physiology , Pest Control, Biological
19.
Ecol Evol ; 6(3): 818-29, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26865969

ABSTRACT

Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host-plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival × reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host-plant defenses a 1.4-fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1-stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5-fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3-fold) and Wolbachia increasing (1.5-fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi-locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host-symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types.

20.
J Cell Biochem ; 117(3): 612-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26264132

ABSTRACT

TCERG1 was characterized previously as a repressor of the transcription factor C/EBPα through a mechanism that involved relocalization of TCERG1 from nuclear speckles to pericentromeric regions. The inhibitory activity as well as the relocalization activity has been demonstrated to lie in the amino terminal half of the protein, which contains several discrete motifs including an imperfect glutamine-alanine (QA) repeat. In the present study, we showed that deletion of this domain completely abrogated the ability of TCERG1 to inhibit the growth arrest activity of C/EBPα. Moreover, the QA repeat deletion mutant of TCERG1 lost the ability to be relocalized from nuclear speckles to pericentromeric regions, and caused an increase in the average size of individual speckles. We also showed that deletion of the QA repeat abrogated the complex formation between TCERG1 and C/EBPα. Examination of mutants with varying numbers of QA repeats indicated that a minimal number of repeats are required for inhibitory activity as well as relocalization ability. These data contribute to our overall understanding of how TCERG1 can have gene-specific effects in addition to its more general roles in coordinating transcription elongation and splicing.


Subject(s)
CCAAT-Enhancer-Binding Proteins/physiology , Transcriptional Elongation Factors/chemistry , Animals , COS Cells , Cell Cycle Checkpoints , Cell Proliferation , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Interaction Domains and Motifs , Protein Transport , Transcriptional Elongation Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...